SEARCH

SEARCH BY CITATION

References

  • Albani, M., and S. Maci (2002), An exact line integral representation of the PO radiation integral from flat perfectly conducting surfaces illuminated by elementary electric and magnetic dipoles, Turk J. Electr. Eng., 10(2), 291305.
  • Asvestas, J. S. (1986), The physical optics fields of an aperture on a perfectly conducting screen in terms of line integrals, IEEE Trans. Antennas Propag., 34(9), 11551159.
  • Balanis, C. A. (1989), Advanced Engineering Electromagnetics, John Wiley, New York.
  • Brigham, E. O. (1974), The Fast Fourier Transform, Prentice-Hall, Upper Saddle River, N. J.
  • Capolino, F., M. Albani, S. Maci, and L. B. Felsen (2000a), Frequency-domain Green's function for a planar periodic semi-infinite phased array – part I: Truncated Floquet wave formulation, IEEE Trans. Antennas Propag., 48(1), 6774.
  • Capolino, F., M. Albani, S. Maci, and L. B. Felsen (2000b), Frequency-domain Green's function for a planar periodic semi–infinite phased array – part II: Diffracted wave phenomenology, IEEE Trans. Antennas Propag., 48(1), 7585.
  • Capolino, F., S. Maci, and L. B. Felsen (2000c), Asymptotic high–frequency Green's function for a planar phased sectoral array of dipoles, Radio Sci., 35(2), 579593.
  • Çivi, Ö. A., P. H. Pathak, and H–.T. Chou (1999), On the Poisson sum formula for the analysis of wave radiation and scattering from large finite arrays, IEEE Trans. Antennas Propag., 47(5), 958959.
  • Çivi, Ö. A., P. H. Pathak, H. Chou, and P. Nepa (2000), A hybrid uniform geometrical theory of diffraction–moment method for efficient analysis of electromagnetic radiation/scattering from large finite planar arrays, Radio Sci., 35(2), 607620.
  • Cui, S., and M. Ando (2002), Line integral representation of physical optics diffraction field from perfectly conducting plates, Microwave Opt. Technol. Lett., 35(3), 206211.
  • Infante, L., and S. Maci (2003), Near–field line–integral representation of the Kirchhoff–type aperture radiation for a parabolic reflector, IEEE Antennas Wireless Propag. Lett., 2, 273276.
  • Janpugdee, P., and P. H. Pathak (2006), A DFT-based UTD ray analysis of large finite phased arrays on a grounded substrate, IEEE Trans. Antennas Propag., 54(4), 11521161.
  • Janpugdee, P., P. H. Pathak, and R. J. Burkholder (2005), A new traveling wave expansion for the UTD analysis of the collective radiation from large finite planar arrays, paper presented at IEEE AP-S International Symposium, Washington, D. C.
  • Johansen, P. M., and O. Breinbjerg (1995), An exact line integral representation of the Physical Optics scattered field: The case of a perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles, IEEE Trans. Antennas Propag., 43(7), 689696.
  • Mioc, F., M. Albani, P. Focardi, and S. Maci (1999), Line-integral representation of the field radiated by a rectangular waveguide modal current distribution, IEEE Trans. Antennas Propag., 47(2), 408410.
  • Miyamoto, K., and E. Wolf (1962), Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave – parts I and II, J. Opt. Soc. Am., 52(6), 615637.
  • Papoulis, A. (1968), Systems and Transforms With Applications in Optics, McGraw-Hill, New York.
  • Pelosi, G., G. Toso, and E. Martini (2000), PO near-field expression of a penetrable planar structure in terms of a line integral, IEEE Trans. Antennas Propag., 48(8), 12741276.
  • Rubinowicz, A. (1962), Geometric derivation of the Miyamoto-Wolf Formula for the vector potential associated with a solution of the Helmholtz equation, J. Opt. Soc. Am., 52(6), 717718.
  • Rubinowicz, A. (1965), The Miyamoto-Wolf diffraction wave, Prog. Opt., 4, 201240.
  • Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci (2004), Incremental theory of diffraction: A new-improved formulation, IEEE Trans. Antennas Propag., 52(9), 22342243.
  • Tsao, J., and B. D. Steinberg (1988), Reduction of sidelobe and speckle artifacts in microwave imaging: the CLEAN technique, IEEE Trans. Antennas Propag., 36(4), 543556.
  • Van Blaricum, M. L., and R. Mittra (1978), Problems and solutions associated with Prony's method for processing transient data, IEEE Trans. Antennas Propag., AP-26(1), 174182.