SEARCH

SEARCH BY CITATION

References

  • Aso, T. (1973), A sheath resonance observed by a high frequency impedance probe, J. Geomagn. Geoelectr., 25, 325330.
  • Balmain, K. G. (1964), The impedance of a short dipole antenna in a magnetoplasma, IEEE Trans. Antennas Propag., AP-21, 605617.
  • Balmain, K. G., and G. A. Oksiutik (1969), RF probe admittance in the ionosphere: theory and experiment, in Plasma Waves in Space and in the Laboratory, vol. 1, edited by J. O. Thomas, and B. J. Landmark, pp. 247261, Edinburgh Univ. Press, Edinburgh.
  • Béghin, C., and E. Kolesnikova (1998), Surface-charge distribution for modeling of quasi-static electric antennas in isotropic thermal plasma, Radio Sci., 33, 503516.
  • Béghin, C., P. M. E. Décréau, J. Pickett, D. Sundkvist, and B. Lefebvre (2005), Modeling of Cluster's electric antennas in space: Application to plasma diagnostics, Radio Sci., 40, RS6008, doi:10.1029/2005RS003264.
  • Bell, T. F., U. S. Inan, and T. Chevalier (2006), Current distribution of a VLF electric dipole antenna in the plasmasphere, Radio Sci., 41, RS2009, doi:10.1029/2005RS003260.
  • Birdsall, C. K., and A. B. Langdon (1985), Plasma Physics via Computer Simulation, McGraw-Hill, New York.
  • Calder, A. C., G. W. Hulbert, and J. G. Laframboise (1993), Sheath dynamics of electrodes stepped to large negative potentials, Phys. Fluids B, 5(3), 674690.
  • Cummer, S. A. (1997), An analysis of new and existing FDTD methods for isotropic cold plasma and a method for improving their accuracy, IEEE Trans. Antennas Propag., 45(3), 392400.
  • Fahleson, U. (1967), Theory of electric field measurements conducted in the magnetosphere with electric probes, Space Sci. Rev., 7, 238262.
  • Fried, B. D., and S. D. Conte (1961), The Plasma Dispersion Function: The Hilbert Transform of the Gaussian, Academic, New York.
  • Hockney, R. W., and J. W. Eastwood (1981), Computer Simulation Using Particles, McGraw-Hill, New York.
  • Ishizone, T., S. Adachi, and Y. Mushiake (1976), Reciprocity relations in an isotropic compressible multifluid plasma, J. Appl. Phys., 47, 29182922.
  • Kuehl, H. H. (1966), Resistance of a short antenna in a warm plasma, Radio Sci., 1, 971976.
  • Kuehl, H. H. (1967), Computations of the resistance of a short antenna in a warm plasma, Radio Sci., 2, 7376.
  • Luebbers, R., K. Kumagai, S. Adachi, and T. Uno (1993), FDTD calculation of radiation patterns, impedance and gain for a monopole antenna on a conducting box, IEEE Trans. Antennas Propag., 35, 9094.
  • Meyer-Vernet, N., and C. Perche (1989), Tool kit for antennae and thermal noise near the plasma frequency, J. Geophys. Res., 94, 24052415.
  • Mott-Smith, H. M., and I. Langmuir (1926), The theory of collectors in gaseous discharges, Phys. Rev., 28, 727763.
  • Nakatani, D. T., and H. H. Kuehl (1976), Input impedance of a short dipole antenna in a warm anisotropic plasma: 1. Kinetic theory, Radio Sci., 11, 433444.
  • Omura, Y., and H. Matsumoto (1993), KEMPO1: Technical guide to one-dimensional electromagnetic particle code, in Computer Space Plasma Physics, edited by H. Matsumoto, and Y. Omura, pp. 2165, Terra Sci., Tokyo.
  • Oya, H. (1965), Effect of resonances on the admittance of an RF plasma probe surrounded by an ion sheath, Rep. Ionos. Space Res. Jpn., 19, 243271.
  • Oya, H., and T. Obayashi (1966), Measurement of ionospheric electron density by a Gyro-Plasma Probe: A rocket experiment by a new impedance probe, Rep. Ionos. Space Res. Jpn., 20, 199213.
  • Schelkunoff, S. A., and H. T. Friis (1952), Antennas; Theory and Practice, John Wiley, New York.
  • Schiff, M. L. (1970), Impedance of a short dipole antenna in a warm isotropic plasma, Radio Sci., 5, 14891496.
  • Schiff, M. L., and J. A. Fejer (1970), Impedance of antennas in a warm isotropic plasma: A comparison of different models, Radio Sci., 5, 811819.
  • Stutzman, W. L., and G. A. Thiele (1997), Antenna Theory and Design, 2nd ed., Wiley, New York.
  • Taflove, A. (1995), Computational Electrodynamics: The Finite-Difference-Time-Domain Method, Artech House, Norwood, Mass.
  • Tajima, T., and Y. C. Lee (1981), Absorbing boundary condition and Budden turning point technique for electromagnetic plasma simulation, J. Comput. Phys., 42, 406413.
  • Usui, H., H. Matsumoto, K. Miyata, and Y. Omura (2004), Computer experiments on electromagnetic environment of plasma sheath at conducting surface, Adv. Space Res., 34, 24412444.
  • Ward, J., C. Swenson, and C. Furse (2005), The impedance of a short dipole antenna in a magnetized plasma via a finite difference time domain model, IEEE Trans. Antennas Propag., 53, 27112718, doi:10.1109/TAP.2005.851823.