SEARCH

SEARCH BY CITATION

References

  • Bateman, H., and A. Erdelyi (1953), Higher Transcendental Functions, vol. 2, McGraw Hill, New York.
  • Bevensee, R. M. (1973), Handbook of Conical Antennas and Scatterers, Gordon and Breach, New York.
  • Bowman, J. J., T. B. A. Senior, and P. L. E. Uslenghi (1987), Electromagnetic and Acoustic Scattering by Simple Shape, North-Holland, Amsterdam.
  • Davis, A., and R. Scharstein (1994), Electromagnetic plane wave excitation of an open-ended conducting frustrum, IEEE Trans., AP-42, 699706.
  • Eremin, Y. A., and A. G. Sveshnikov (1987), Investigation, by the method of the secondary sources, the wave diffraction by the locally heterogeneous solids of revolution, Izv. vysh. ucheb. zaved, Radiophysics, 30, 771775.
  • Felsen, L. B., and N. Marcuvitz (1973), Radiation and Scattering of Waves, Prentice-Hall, Englewood Cliffs, N. J.
  • Goshin, G. G. (1987), Electrodynamics Value Boundary Problems for Conical Regions (in Russian), Izdatelstvo Tomsk Univ., Tomsk.
  • Kuryliak, D. B. (2000a), Regularization operators for scalar diffraction by conical surfaces (in Russian), Radio Phys. Radio Astron., 5, 152157.
  • Kuryliak, D. B. (2000b), Dual Series Equations with Associate Legendre Functions and Their Application For Wave Diffraction Theory (in Russian), Rep. Natl. Acad. Sci., Ukraine, no. 10, 7078.
  • Kuryliak, D. B., and Z. T. Nazarchuk (2000), Illumination of a finite cone by an axial-symmetric electromagnetic wave, Radio Phys. Radio Astron., 5, 2937 [in Russian].
  • Kuryliak, D. B., and Z. T. Nazarchuk (2006), Analytical-Numerical Method in the Theory of Wave Diffraction on Conical and Wedge-Shaped Surfaces (in Ukrainian), Naukova Dumka, Kyiv.
  • Lebedev, N. N. (1972), Special Functions and Their Application, Dover, New York.
  • Mittra, R., and S.-W. Lee (1971), Analytical Technique in the Theory of Guided Waves, MacMillan, New York.
  • Northover, F. H. (1965a), The diffraction of electric waves around a finite, perfectly conducting cone. Pt. 1. The mathematical solution, J. Math. Anal. Appl., 10, 3749, doi:10.1016/0022-247X(65)90145-9.
  • Northover, F. H. (1965b), The diffraction of electric waves around a finite, perfectly conducting cone. Pt. 2. The field singularities, J. Math. Anal. Appl., 10, 5069, doi:10.1016/0022-247X(65)90146-0.
  • Pridmore-Brown, D. C. (1968), A Wiener-Hopf solution of a radiation problem in conical geometry, J. Math. Phys., 47, 7994.
  • Senior, T., and P. Uslenghi (1971), High-frequency backscattering from a finite cone, Radio Sci., 6, 393406, doi:10.1029/RS006i003p00393.
  • Shestopalov, V. P., A. A. Kirilenko, and A. A. Masalov (1984), Convolution Type Matrix Equations in the Theory of Diffraction (in Russian), Naukova Dumka, Kyiv.
  • Syed, A. (1981), The diffraction of arbitrary electromagnetic field by a finite perfectly conducting cone, J. Nat. Sci. Math., 2, 85114.
  • Ufimtsev, P. Y. (1962), Method of Edge Waves in Physical Theory of Diffraction (in Russian), Sovetskoe Radio, Moscow.