SEARCH

SEARCH BY CITATION

References

  • Bleistein, N., and R. A. Handelsman (1986), Asymptotic Expansions of Integrals, chap. 3, pp. 6976, Dover, New York.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2005), Efficient computation of the 2D Green's function for 1D periodic structures using the Ewald method, IEEE Trans. Antennas Propag., 53, 29772984.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2007), Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method, J. Comput. Phys., 223, 250261.
  • Ewald, P. P. (1921), Die berechnung optischer und electrostatischer gitterpotentiale, Ann. Phys., 64, 253287.
  • Felsen, L. B., and N. Marcuvitz (1994), Radiation and Scattering of Waves, chap. 4, p. 376, IEEE Press, Piscataway, N. J.
  • Jordan, K. E., G. R. Richter, and P. Sheng (1986), An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures, J. Comput. Phys., 63, 222235.
  • Khayat, M. A., and D. R. Wilton (2005), Numerical evaluation of singular and near singular potential integrals, IEEE Trans. Antennas Propag., 53, 31803190.
  • Kustepeli, A., and A. Q. Martin (2000), On the splitting parameter in the Ewald method, Microwave Guided Wave Lett., 10, 168170.
  • Mathis, A. W., and A. F. Peterson (1996), A comparison of acceleration procedures for the two-dimensional periodic Green's function, IEEE Trans. Antennas Propag., 44, 567571.
  • Mathis, A. W., and A. F. Peterson (1998), Efficient electromagnetic analysis of a doubly infinite array of rectangular apertures, IEEE Trans. Microwave Theory Tech., 46, 4654.
  • Oroskar, S., D. R. Jackson, and D. R. Wilton (2006), Efficient computation of the 2D periodic Green's function using the Ewald method, J. Comput. Phys., 219, 899911.