SEARCH

SEARCH BY CITATION

References

  • Born, M., and E. Wolf (1965), Principles of Optics, 3rd ed., Oxford, U. K.
  • Capolino, F., M. Albani, S. Maci, and R. Tiberio (1998), High frequency analysis of an array of line sources on a truncated ground plane, IEEE Trans. Antennas Propag., 46(4), 570578.
  • Capolino, F., M. Albani, S. Maci, and L. B. Felsen (2000a), Frequency domain Green's function for a planar periodic semi-infinite dipole array. Part I: Truncated Floquet wave formulation, IEEE Trans. Antennas Propag., 48(1), 6774.
  • Capolino, F., M. Albani, S. Maci, and L. B. Felsen (2000b), Frequency domain Green's function for a planar periodic semi-infinite dipole array. Part II: Phenomenology of diffracted waves, IEEE Trans. Antennas Propag., 48(1), 7585.
  • Carin, L., and L. Felsen (1993), Time harmonic and transient scattering by finite periodic flat strip arrays: Hybrid (ray)-(Floquet mode)-(MoM) algorithm, IEEE Trans. Antennas Propag., 41(4), 412421.
  • Çivi, Ö. A., P. H. Pathak, H.-T. Chou, and P. Nepa (2000), A hybrid UTD-MoM for efficient analysis for radiation/scattering from large finite planar arrays, Radio Sci., 35(2), 607620.
  • Craeye, C., A. G. Tijhuis, and D. H. Schaubert (2004), An efficient mom formulation for finite-by-infinite arrays of two-dimensional antennas arranged in a three-dimensional structure, IEEE Trans. Antennas Propag., 52, 271282.
  • Fel'd, I. N. (1958), Diffraction of electromagnetic waves on a semi-infinite grating, Radiotekh. Electron., 3, 882889.
  • Felsen, L., and L. Carin (1994), Frequency and time domain Bragg-modulated acoustics for truncated periodic arrays, J. Acoust. Soc. Am., 95(2), 638649.
  • Hills, N. L. (1965), Semi-infinite diffraction gratings. II. Inward resonance, Commun. Pure Appl. Math., 18, 389395.
  • Hills, N. L., and S. N. Karp (1965), Semi-infinite diffraction gratings - I, Commun. Pure Appl. Math., 18, 203233.
  • Jones, D. S. (1964), The Theory of Electromagnetism, Pergamon, Oxford, U. K.
  • Kildal, P.-S. (1984), Diffraction corrections to the cylindrical wave radiated by a linear array feed of a cylindrical reflector antenna, IEEE Trans. Antennas Propag., 32, 11111116.
  • Kobayashi, K. (1990), Wiener-Hopf and modified residue calculus techniques, in Analysis Methods for Electromagnetic Wave Problems, edited by E. Yamashita, chap. 8, Artech House, Boston, Mass.
  • Koughnett, A. L. V. (1970), Mutual coupling effects in linear antenna arrays, Can. J. Phys., 48, 659674.
  • Kouyoumjian, R. G., and P. H. Pathak (1974), A uniform geometrical theory of diffraction for an edge in a perfectly conducting surface, Proc. IEEE, 62(11), 14481461.
  • Linton, C. M., and P. A. Martin (2004), Semi-infinite arrays of isotropic point-scatterers. a unified approach, SIAM J. Appl. Math., 64, 10351056.
  • Neto, A., S. Maci, G. Vecchi, and M. Sabbadini (2000a), Truncated Floquet wave diffraction method for the full wave analysis of large phased arrays. Part I: Basic principles and 2D case, IEEE Trans. Antennas Propag., 48(3), 594600.
  • Neto, A., S. Maci, G. Vecchi, and M. Sabbadini (2000b), Truncated Floquet wave diffraction method for the full wave analysis of large phased arrays. Part II: Generalization to the 3D case, IEEE Trans. Antennas Propag., 48(3), 600611.
  • Nishimoto, N., and H. Ikuno (1999), Analysis of electromagnetic wave diffraction by a semi-infinite strip grating and evaluation of end-effects, Prog. Electromagn. Res., 23, 3958.
  • Noble, B. (1958), Methods Based on the Wiener-Hopf Technique, Pergamon, London.
  • Wasylkiwskyj, W. (1973), Mutual coupling effects in semi-infinite arrays, IEEE Trans. Antennas Propag., 21(3), 277285.
  • Wasylkiwskyj, W., and W. Kahn (1970), Theory of mutual coupling among minimum-scattering antennas, IEEE Trans. Antennas Propag., 18(2), 204216.