SEARCH

SEARCH BY CITATION

References

  • Alley, W. M., R. W. Healy, J. W. LaBaugh, and T. E. Reilly (2002), Hydrology-flow and storage in groundwater systems, Science, 296(5575), 19851990.
  • Ashby, S. F., and R. D. Falgout (1996), A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations, Nucl. Sci. Eng., 124(1), 145159.
  • Betts, A. K., J. H. Ball, A. C. M. Beljaars, M. J. Miller, and P. A. Viterbo (1996), The land surface-atmosphere interaction: A review based on observational and global modeling perspectives, J. Geophys. Res., 101(D3), 72097225.
  • Bierkens, M. F. P., and B. J. J. M. van den Hurk (2007), Groundwater convergence as a possible mechanism for multi-year persistence in rainfall, Geophys. Res. Lett., 34, L02402, doi:10.1029/2006GL028396.
  • Chen, X., and Q. Hu (2004), Groundwater influences on soil moisture and surface evaporation, J. Hydrol., 297(1–4), 285300.
  • Chen, T. H., et al. (1997), Cabauw experimental results from the project for intercomparison of land-surface parameterization schemes, J. Clim., 10(6), 11941215.
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue (2006), High-resolution large-eddy simulations of flow in a steep Alpine valley. Part I: Methodology, verification, and sensitivity experiments, J. Appl. Meteorol. Clim., 45(1), 6386.
  • Dai, X. P., X. Zeng, and C. D. Dickinson (2001), The Common Land Model (CLM): Technical documentation and user's guide.
  • Dai, Y. J., et al. (2003), The Common Land Model, Bull. Am. Meteorol. Soc., 84(8), 10131023.
  • Famiglietti, J. S., and E. F. Wood (1994), Multiscale modeling of spatially-variable water and energy-balance processes, Water Resour. Res., 30(11), 30613078.
  • Grayson, R. B., G. Bloschl, A. W. Western, and T. A. McMahon (2002), Advances in the use of observed spatial patterns of catchment hydrological response, Adv. Water Resour., 25(8–12), 13131334.
  • Gulden, L. E., et al. (2007), Improving land-surface model hydrology: Is an explicit aquifer model better than a deeper soil profile? Geophys. Res. Lett., 34, L09402, doi:10.1029/2007GL029804.
  • Henderson-Sellers, A., and B. Henderson-Sellers (1995), Simulating the diurnal temperature range: Results from phase 1(a) of the project for intercomparison of landsurface parameterisation schemes (PILPS), Atmos. Res., 37, 19.
  • Holt, T. R., D. Niyogi, F. Chen, K. Manning, M. A. LeMone, and A. Qureshi (2006), Effect of land-atmosphere interactions on the IHOP 24–25 May 2002 convection case, Mon. Wea. Rev., 134(1), 113133.
  • Hong, S. Y., and E. Kalnay (2000), Role of sea surface temperature and soil-moisture feedback in the 1998 Oklahoma-Texas drought, Nature, 408(6814), 842844.
  • Jackson, J. E., et al. (1999), Soil moisture mapping at regional scale using microwave radiometry: The Southern Great Plains Hydrology Experiment, IEEE Trans. Geosci. Remote Sens., 37, 15.
  • Jones, J. E., and C. S. Woodward (2001), Newton-Krylov-multigrid solvers for large-scale, highly heterogeneous, variably saturated flow problems, Adv. Water Resour., 24(7), 763774.
  • Kollet, S. J., and R. M. Maxwell (2006), Integrated surface-groundwater flow modeling: A free-surface overland flow boundary condition in a parallel groundwater flow model, Adv. Water Resour., 29(7), 945958.
  • Kutilek, M., and D. R. Nielsen (1994), Soil hydrology, Catena Verlag, Cremlingen-Destedt, 370.
  • Liang, X., Z. H. Xie and M. Y. Huang (2003), A new parameterization for surface and groundwater interactions and its impact on water budgets with the variable infiltration capacity (VIC) land surface model, J. Geophys. Res., 108(D16), 8613, doi:10.1029/2002JD003090.
  • Lohmann, D., et al. (1998), The Project for Intercomparison of Land-surface Parameterization Schemes (PILPS) phase 2(c) Red-Arkansas River basin experiment: 3. Spatial and temporal analysis of water fluxes, Global Planet. Change, 19(1–4), 161179.
  • Mahfouf, J. F., and J. Noilhan (1991), Comparative-study of various formulations of evaporation from bare soil using in situ data, J. Appl. Meteorol., 30(9), 13541365.
  • Manabe, S., J. Smagorin, J. L. Holloway, and H. M. Stone (1970), Simulated climatology of a general circulation model with a hydrologic cycle, Mon. Wea. Rev., 98(3), 175212.
  • Maxwell, R. M., and N. L. Miller (2005), Development of a coupled land surface and groundwater model, J. Hydrometeorol., 6(3), 233247.
  • Maxwell, R. M., F. K. Chow, and S. J. Kollet (2007), The groundwater-land-surface-atmosphere connection: Soil moisture effects on the atmospheric boundary layer in fully-coupled simulations, Adv. Water Resour., 30(12), 24472466.
  • Meyers, T. P. (2001), A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions, Agr. Forest Meteorol., 106(3), 205214.
  • NRC, N. R. C. (2004), Groundwater fluxes across interfaces, The National Academic Press, Washington, D.C., 85.
  • Patton, E. G., P. P. Sullivan, and C. M. Moeng (2005), The influence of idealized heterogeneity on wet and dry planetary boundary layers coupled to the land surface, J. Atmos. Sci., 62(7), 20782097.
  • PetersLidard, C. D., M. S. Zion, and E. F. Wood (1997), A soil-vegetation-atmosphere transfer scheme for modeling spatially variable water and energy balance processes, J. Geophys. Res., 102(D4), 43034324.
  • Pitman, A. J., et al. (1999), Key results and implications from phase 1(c) of the Project for Intercomparison of Land-Surface Parametrization Schemes, Clim. Dyn., 15(9), 673684.
  • Qu, W. Q., et al. (1998), Sensitivity of latent heat flux from PILPS land-surface schemes to perturbations of surface air temperature, J. Atmos. Sci., 55(11), 19091927.
  • Quinn, P., K. Beven, and A. Culf (1995), The introduction of macroscale hydrological complexity into land surface-atmosphere transfer models and the effect on planetary boundary-layer development, J. Hydrol., 166(3–4), 421444.
  • Reed, P. M., et al. (2006), Bridging river basin scales and processes to assess human-climate impacts and the terrestrial hydrologic system, Water Resour. Res., 42, W07418, doi:10.1029/2005WR004153.
  • Schaap, M. G., and F. J. Leij (1998), Database-related accuracy and uncertainty of pedotransfer functions, Soil Sci., 163(10), 765779.
  • Schlosser, C. A., et al. (2000), Simulations of a boreal grassland hydrology at Valdai, Russia: PILPS phase 2(D), Mon. Wea. Rev., 128(2), 301321.
  • Shao, Y. P., and A. HendersonSellers (1996), Modeling soil moisture: A project for intercomparison of land surface parameterization schemes phase 2(b), J. Geophys. Res., 101(D3), 72277250.
  • Sophocleous, M., and S. P. Perkins (2000), Methodology and application of combined watershed and ground-water models in Kansas, J. Hydrol., 236(3–4), 185201.
  • Sophocleous, M. A., J. K. Koelliker, R. S. Govindaraju, T. Birdie, S. R. Ramireddygari, and S. P. Perkins (1999), Integrated numerical modeling for basin-wide water management: The case of the Rattlesnake Creek basin in south-central Kansas, J. Hydrol., 214(1–4), 179196.
  • Toth, J. (1963), A theoretical analysis of groundwater flow in small drainage basins, J. Geophys. Res., 67, 48124975.
  • Twine, T. E., et al. (2000), Correcting eddy-covariance flux underestimates over a grassland, Agr. Forest Meteorol., 103(3), 279300.
  • Yeh, P. J. F., and E. A. B. Eltahir (2005), Representation of water table dynamics in a land surface scheme. Part I: Model development, J. Clim., 18(12), 18611880.
  • York, J. P., M. Person, W. J. Gutowski, and T. C. Winter (2002), Putting aquifers into atmospheric simulation models: An example from the Mill Creek Watershed, northeastern Kansas, Adv. Water Resour., 25(2), 221238.
  • Zijl, W. (1999), Scale aspects of groundwater flow and transport systems, Hydrogeol. J., 7(1), 139150.