SEARCH

SEARCH BY CITATION

References

  • Ahuja, L. R., L. Ma, and D. Timlin (2006), Trans-disciplinary soil physics research critical to synthesis and modeling of agriculture systems, Soil Sci. Soc. Am. J., 70, 311326, doi:10.2136/sssaj2005.0207.
  • Aitchison, G. (1957), The strength of quasi-saturated and unsaturated soils in relation to the pressure deficiency in the pore water, paper presented at 4th International Conference on Soil Mechanics and Foundation Engineering, London.
  • Alonso, E., A. Gens, and A. Josa (1990), A constitutive model for partially saturated soils, Geotechnique, 40(3), 405430.
  • Balser, T. C., et al. (2006), Bridging the gap between micro- and macro-scale perspectives on the role of microbial communities in global change ecology, Plant Soil, 289, 5970, doi:10.1007/s11104-006-9104-5.
  • Barbour, S. L., and D. G. Fredlund (1989), Mechanisms of osmotic flow and volume change in clay soils, Can. Geotech. J., 26, 551562.
  • Barzegar, A., R. Murray, G. Churchman, and P. Rengasamy (1994), The strength of remolded soils as affected by exchangeable cations and dispersible clay, Aust. J. Soil Res., 32, 185199, doi:10.1071/SR9940185.
  • Barzegar, A., J. Oades, P. Rengasamy, and R. Murray (1995), Tensile strength of dry, remolded soils as affected by properties of the clay fraction, Geoderma, 65, 93108, doi:10.1016/0016-7061(94)00028-9.
  • Bishop, A. (1959), The principle of effective stress, Tek. Ukeblad, 106(39), 859863.
  • Bishop, A., and G. Blight (1963), Some aspects of effective stress in saturated and partly saturated soils, Geotechnique, 13, 177197.
  • Bolt, G. H. (1956), Physico-chemical analysis of the compressibility of pure clays, Geotechnique, 6, 8693.
  • Braudeau, E., and R. H. Mohtar (2004), Water potential in nonrigid unsaturated soil-water medium, Water Resour. Res., 40, W05108, doi:10.1029/2004WR003119.
  • Braudeau, E., and R. H. Mohtar (2006), Modelling the swelling curve for packed soil aggregates using the pedostructure concept, Soil Sci. Soc. Am. J., 70, 494502, doi:10.2136/sssaj2004.0211.
  • Braudeau, E., and R. H. Mohtar (2008), Modeling the soil system: Bridging the gap between pedology and soil-water physics, Global Planet. Change, in press.
  • Braudeau, E., J. Frangi, and R. Mohtar (2004a), Characterizing nonrigid aggregated soil-water medium using its shrinkage curve, Soil Sci. Soc. Am. J., 68, 359370.
  • Braudeau, E., R. Mohtar, and N. Chahinian (2004b), Estimating soil shrinkage parameters, in Development of Pedotransfer Functions in Soil Hydrology, Dev. Soil Sci., vol. 30, edited by Y. Pachepsky, and W. Rawls, pp. 225240, Elsevier, New York.
  • Chertkov, V. (2002), Modeling cracking stages of saturated soils as they dry and shrink, Eur. J. Soil Sci., 53, 105118, doi:10.1046/j.1365-2389.2002.00430.x.
  • Dixon, D., and M. Gary (1985), The engineering properties of buffered material, Tech. Rep. TR-350, Fuel Waste Technol. Branch, Whiteshell Lab., Pinawa, Manitoba, Canada.
  • Donald, I. (1960), Discussion, in Proceedings of Conference on Pore Pressure, p. 69, Butterworths, London.
  • Escario, V. (1980), Suction controlled penetration and shear tests, paper presented at Fourth International Conference on Expansive Soils, Am. Soc. of Civ. Eng., Denver, Colo.
  • Escario, V., and J. Saez (1986), The shear strength of partly saturated soils, Geotechnique, 36(3), 453456.
  • Farrell, D., E. L. Greacen, and W. E. Larson (1967), The effect of water content on axial strain in a loam soil under tension and compression, Soil Sci. Soc. Am. Proc., 31, 445450.
  • Fredlund, D. (2006), Unsaturated soil mechanics in engineering practice, J. Geotech. Geoenviron. Eng., 132(3), 286321, doi:10.1061/(ASCE)1090-0241(2006)132:3(286).
  • Fredlund, D., N. Morgenstern, and R. Widger (1978), The shear strength of unsaturated soils, Can. Geotech. J., 15(3), 313321, doi:10.1139/t78-029.
  • Fredlund, D., H. Rahardjo, and J. Gan (1987), Non linearity of strength envelope for unsaturated soils, in Sixth International Conference on Expansive Soils, New Delhi: Proceedings, New Delhi, 1–4 December 1987, pp. 4954, Taylor and Francis, Philadelphia.
  • Fredlund, D., A. Xing, M. Fredlund, and S. Barbour (1996), The relationship of the unsaturated soil shear to the soil-water characteristic curve, Can. Geotech. J., 33(3), 440448, doi:10.1139/t96-065.
  • Garven, E., and S. Vanapalli (2006), Evaluation of empirical procedures for predicting the shear strength of unsaturated soils, in Unsaturated Soils 2006: Proceedings of the Fourth International Conference on Unsaturated Soils, edited by G. A. Miller et al., pp. 25702581, Am. Soc. of Civ. Eng., Reston, Va.
  • Gens, A., and E. Alonso (1992), A framework for the behavior of unsaturated expansive clays, Can. Geotech. J., 29, 10131032, doi:10.1139/t92-120.
  • Hossain, A., and W. Weiss (2004), Assessing residual stress development and stress relaxation in restrained concrete ring specimens, Cement Concr. Composites, 26, 531540, doi:10.1016/S0958-9465(03)00069-6.
  • Hossain, A., B. Pease, and W. Weiss (2003), Quantifying early age stress development and cracking in low w/c concrete using the restrained ring test with acoustic emission, Transp. Res. Rec., 1834, 2433.
  • Ibarra, S., E. McKyes, and R. Broughton (2005), Measurement of tensile strength of unsaturated sandy loam soil, Soil Tillage Res., 81, 1523, doi:10.1016/j.still.2004.04.002.
  • Imhoff, S., A. Pires da Silva, and A. Dexter (2002), Factors contributing to the tensile strength and friability of oxisols, Soil Sci. Soc. Am. J., 66, 16561661.
  • Jennings, J., and J. Burland (1962), Limitations to the use of effective stress in partly saturated soils, Geotechnique, 12, 125144.
  • Khalili, N., F. Geiser, and G. Blight (2004), Effective stress in unsaturated soils: Review with new evidence, Int. J. Geomech., 4(2), 115126, doi:10.1061/(ASCE)1532-3641(2004)4:2(115).
  • Lambe, T. W. (1953), The structure of inorganic soils, Proc. Am. Soc. Civ. Eng., 79(315), 149.
  • Lambe, T. W. (1960), A mechanistic picture of shear strength in clay, paper presented at Conference on Shear Strength of Cohesive Soils, Am. Soc. of Civ. Eng., Univ. of Colo., Boulder.
  • Lin, H. (2003), Hydropedology: Bridging disciplines, scales, and data, Vadoze Zone J., 2, 111.
  • Lin, H., H. Bouma, Y. Pachepsky, A. Western, J. Thompson, R. van Genuchten, H.-J. Vogel, and A. Lilly (2006), Hydropedology: Synergistic integration of pedology and hydrology, Water Resour. Res., 42, W05301, doi:10.1029/2005WR004085.
  • Low, P. (1979), Nature and properties of water in mortmorillonite-water systems, Soil Sci. Soc. Am. J., 43, 651658.
  • Lu, N., and W. Likos (2006), Suction stress characteristic curve for unsaturated soils, J. Geotech. Geoenviron. Eng., 132(2), 131142, doi:10.1061/(ASCE)1090-0241(2006)132:2(131).
  • Lu, N., B. Wu, and C. Tan (2007), Tensile strength characteristics of unsaturated sands, J. Geotech. Geoenviron. Eng., 133(2), 144154, doi:10.1061/(ASCE)1090-0241(2007)133:2(144).
  • Matsushi, Y., and Y. Matsukura (2006), Cohesion of unsaturated residual soils as a function of volumetric water content, Bull. Eng. Geol. Environ., 65, 449455, doi:10.1007/s10064-005-0035-9.
  • Matyas, E., and H. Radhakrishna (1968), Volume change characteristics of partially saturated soils, Geotechnique, 18, 432448.
  • Mitchell, J. (1960), Components of pore water pressure and their engineering significance: Symposium on the engineering aspects of the physico-chemical properties of clays, Clays Clay Miner., 9(1), 162184, doi:10.1346/CCMN.1960.0090109.
  • Moon, J., and W. Weiss (2006), Estimating residual stress in the restrained ring test under circumferential drying, Cement Concr. Composites, 28, 486496.
  • Nahlawi, H., S. Chakraborti, and J. Kodikara (2004), A direct tensile strength testing method for unsaturated geomaterial, Geotech. Test. J., 24(4), 16.
  • Oberg, A., and G. Sällfors (1997), Determination of shear strength parameters of unsaturated silts and sands based on the water retention curve, Geotech. Test. J., 20(l), 4048.
  • Rao, S. (1996), Role of apparent cohesion in the stability of Dominican allophone soil slopes, Eng. Geol. Amsterdam, 43, 265279, doi:10.1016/S0013-7952(96)00036-1.
  • Santamarina, J. (2001), Soil behavior at the microscale: Particle forces, in Soil Behavior and Soft Ground Construction, Geotech. Spec. Publ. Ser., vol. 119, edited by J. T. Germaine, T. C. Sheahan, and R. W. Whitman, pp. 2556, Am. Soc. of Civ. Eng., Reston, Va.
  • Shah, H., and W. Weiss (2006), Quantifying shrinkage cracking in fiber reinforced concrete using the ring test, RILEM, Mater. Struct., 39, 887899, doi:10.1617/s11527-006-9089-9.
  • Sridharan, A. (1968), Some studies on the strength of partly saturated clays, Ph.D. thesis, 198 pp., Purdue Univ., West Lafayette, Ind.
  • Sridharan, A., and G. Vinkatappa Rao (1971), Effective stress theory of shrinkage phenomena, Can. Geotech. J., 8(4), 503513, doi:10.1139/t71-052.
  • Sridharan, A., and G. Vinkatappa Rao (1973), Mechanisms controlling volume change of saturated clays and the role of effective stress concept, Geotechnique, 23(3), 359382.
  • Tang, G., and J. Graham (2000), A method for testing tensile strength in unsaturated soils, Geotech. Test. J., 23(3), 377382.
  • Terzaghi, K. (1936), The shear resistance of unsaturated soils, paper presented at 1st International Conference on Soil Mechanics and Foundation Engineering, Harvard Univ., Cambridge, Mass.
  • Terzaghi, K. (1950), Mechanism of landslides, in Application of Geology to Engineering Practice, Berkey Volume, edited by Sidney Paige, pp. 83123, Geol. Soc. of Am., Baltimore, Md.
  • Timoshenko, S., and J. Goodier (1987), Theory of Elasticity, 608 pp., McGraw-Hill, New York.
  • Vanapalli, S., D. Fredlund, D. Pufahl, and A. Clifton (1996), Model for the prediction of shear strength with respect to soil suction, Can. Geotech. J., 33, 379392, doi:10.1139/t96-060.
  • van Genuchten, M. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J., 44, 892898.
  • van Genuchten, M., F. Leij, and S. Yates (1991), The RETC code for quantifying the hydraulic functions of unsaturated soils, EPA/600/2–91/065, U.S. Salinity Lab., Riverside, Calif.
  • Vesga, L., and L. Vallejo (2006), Direct and indirect tensile tests for measuring the equivalent effective stress in a kaolinite clay, in Proceedings of the Fourth International Conference on Unsaturated Soils, edited by G. Miller et al., pp. 12901301, Am. Soc. of Civ. Eng., Reston, Va., doi:10.1061/40802(189)106.
  • Vomocil, J., L. Waldron, and W. Chancellor (1961), Soil tensile strength by centrifugation, Soil Sci. Soc. Am. Proc., 25, 176180.
  • Watts, C., and A. Dexter (1998), Soil friability: Theory, measurement and effects of management and organic carbon content, Eur. J. Soil Sci., 49, 7384, doi:10.1046/j.1365-2389.1998.00129.x.
  • Weiss, W. J. (1997), Shrinkage cracking in restrained concrete slabs: Test method, material compositions, shrinkage reducing admixtures, and theoretical modeling, M.S. thesis, Northwest. Univ., Evanston, Ill., June.
  • Weiss, W., and S. Furgeson (2001), Restrained shrinkage testing: The impact of specimen geometry on quality control testing for material performance assessment, in Concreep 6: Creep, Shrinkage, and Curability Mechanic of Concrete and Other Quasi-Brittle Materials, edited by F. J. Ulm, Z. P. Bazant, and F. H. Wittman, pp. 645651, Elsevier, New York.
  • Weiss, W., W. Yang, and S. Shah (1997), Restrained shrinkage cracking in concrete, paper presented at Sixth International Purdue Conference on Concrete Pavement: Design and Materials for High Performance, Purdue Univ., West Lafayette, Ind.
  • Yong, R., and B. Warkentin (1975), Soil Properties and Behaviour, 449 pp., Elsevier, New York.