SEARCH

SEARCH BY CITATION

References

  • Barnes, H. H. (1967), Roughness characteristics of natural channels, U.S. Geol. Surv. Water Supply Pap., 1849, 213 pp.
  • Benson, M. A., and T. Dalrymple (1967), General field and office procedures for indirect discharge measurements, U.S. Geol. Surv. Tech. Water Resour. Invest. Book 3, Chap. A1, 30 pp.
  • Blasch, K. W., T. P. A. Ferré, and J. P. Hoffmann (2002), New field method to determine streamflow timing using electrical resistance sensors, Vadose Zone J., 1, 289299.
  • Blasch, K. W., T. P. A. Ferré, J. P. Hoffmann, and J. B. Fleming (2006), Relative contributions of transient and steady state infiltration during ephemeral streamflow, Water Resour. Res., 42, W08405, doi:10.1029/2005WR004049.
  • Böhlke, J. K., J. W. Harvey, and M. A. Voytek (2004), Reach scale isotope tracer experiment to quantify denitrification and related processes in a nitrate-rich stream, mid continent USA, Limnol. Oceanogr., 49, 821838.
  • Bouwer, H. (1966), Rapid field measurement of air entry value and hydraulic conductivity of soil as significant parameters in flow system analysis, Water Resour. Res., 2, 729738, doi:10.1029/WR002i004p00729.
  • Brooks, R. H., and A. T. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap., 3, 27 pp., Colo. State Univ., Fort Collins, Colo.
  • Brunke, M., and T. Gonser (1997), The ecological significance of exchange processes between streams and groundwater, Freshwater Biol., 37, 133, doi:10.1046/j.1365-2427.1997.00143.x.
  • Burden, R. L., and J. D. Faires (1997), Numerical Analysis, 811 pp., Brooks/Cole, Pacific Grove, Calif.
  • Constantine, C. R. (2003), The effects of substrate variability and incision on the downward-fining pattern in the Cosumnes River, Central Valley, California, M.Sc. thesis, Dep. of Geol., Univ. of Calif., Davis.
  • Constantz, J., D. A. Stonestrom, A. E. Stewart, R. G. Niswonger, and T. R. Smith (2001), Analysis of streambed temperatures in ephemeral channels to determine streamflow frequency and duration, Water Resour. Res., 37, 317328, doi:10.1029/2000WR900271.
  • Constantz, J., M. H. Cox, and G. W. Su (2003), Comparison of heat and bromide as ground water tracers near streams, Ground Water, 41, 647656, doi:10.1111/j.1745-6584.2003.tb02403.x.
  • Cox, M. H., G. W. Su, and J. Constantz (2007), Heat, chloride, and specific conductance as ground water tracers near streams, Ground Water, 45(2), 187195, doi:10.1111/j.1745-6584.2006.00276.x.
  • Dagan, G., and E. Bresler (1983), Unsaturated flow in spatially variable fields: 1. Derivation of models of infiltration and redistribution, Water Resour. Res., 19, 413420, doi:10.1029/WR019i002p00413.
  • Elliott, R. L., and W. R. Walker (1982), Field evaluation of furrow infiltration and advance functions, Trans. ASAE, 25, 396400.
  • Fread, D. L. (1993), Flow routing, in Handbook of Hydrology, edited by D. R. Maidment, pp. ?–?, McGraw-Hill, New York.
  • Freyberg, D. L., J. W. Reeder, J. B. Franzini, and I. Remson (1980), Application of the Green-Ampt model to infiltration under time-dependent surface water depths, Water Resour. Res., 16, 517528, doi:10.1029/WR016i003p00517.
  • Gardner, W. R., D. Hillel, and Y. Benyamini (1970), Post-irrigation movement of soil water: 1 Redistribution, Water Resour. Res., 6, 851861, doi:10.1029/WR006i003p00851.
  • Gooseff, M. N., and B. L. McGlynn (2005), A stream tracer technique employing ionic tracers and specific conductance data applied to the Maimai catchment, New Zealand, Hydrol. Processes, 19(13), 24912506, doi:10.1002/hyp.5685.
  • Harbaugh, A. W. (2005), MODFLOW-2005, the U.S. Geological Survey modular ground-water model—The ground-water flow process, U.S. Geol. Surv. Tech. Methods, Book 6, Chap. A16.
  • Harvey, J. W., and K. E. Bencala (1993), The effect of streambed topography on surface-subsurface water exchange in mountain catchments, Water Resour. Res., 29, 8998, doi:10.1029/92WR01960.
  • Heniche, M., Y. Secretan, P. Boudreau, and M. Leclerc (2000), A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries, Adv. Water Resour., 23, 359372, doi:10.1016/S0309-1708(99)00031-7.
  • Hsu, S. M., C.-F. Ni, and P.-F. Hung (2002), Assessment of three infiltration formulas based on model fitting on Richards equation, J. Hydrol. Eng., 7, 373379, doi:10.1061/(ASCE)1084-0699(2002)7:5(373).
  • Kilroy, K. C. (1991), Ground water conditions in Amargosa Desert, Nevada-California, 1952–87, U.S. Geol. Surv. Water Res. Invest. Rep., 89-4101, 93 pp.
  • Lee, D. R. (1977), A device for measuring seepage flux in lakes and estuaries, Limnol. Oceanogr., 22, 140147.
  • Lighthill, M. J., and G. B. Whitham (1955), On kinematic floods—Flood movements in long rivers, Proc. R. Soc. London, Ser. A, 220, 281316.
  • McCord, J. T., C. A. Gotway, and S. H. Conrad (1997), Impact of geologic heterogeneity on recharge estimation using environmental tracers: Numerical modeling investigation, Water Resour. Res., 33, 12291240, doi:10.1029/96WR03755.
  • Milly, P. C. (1986), An event-based simulation model of moisture and energy fluxes at a bare soil surface, Water Resour. Res., 22, 16801692, doi:10.1029/WR022i012p01680.
  • Niswonger, R. G., and D. E. Prudic (2003), Modeling heat as a tracer to estimate streambed seepage and hydraulic conductivity, in Heat as a Tool for Studying the Movement of Ground Water Near Streams, edited by D. A. Stonestrom, and J. Constantz, U. S. Geol. Surv. Circ., 1260, 8089.
  • Niswonger, R. G., and D. E. Prudic (2005), Documentation of the Streamflow-Routing (SFR2) package to include unsaturated flow beneath streams—A modification to SFR1, U. S. Geol. Surv. Tech. Methods, 6-A13, 48 pp.
  • Niswonger, R. G., D. E. Prudic, G. Pohll, and J. Constantz (2005), Incorporating seepage losses into the unsteady streamflow equations for simulating intermittent flow along mountain front streams, Water Resour. Res., 41, W06006, doi:10.1029/2004WR003677.
  • Parlange, J.-V. (1973), Note on the infiltration advance front from border irrigation, Water Resour. Res., 9, 10751078, doi:10.1029/WR009i004p01075.
  • Patel, V. A. (1994), Numerical Analysis, Harcourt Brace, Orlando, Fla.
  • Philip, J. R. (1957), The theory of infiltration: 1. The infiltration equation and its solution, Soil Sci., 53, 345357.
  • Philip, J. R. (1958a), The theory of infiltration: 7. The infiltration equation and its solution, Soil Sci., 85, 333337.
  • Philip, J. R. (1958b), The theory of infiltration: 6. Effect of water depth over soil, Soil Sci., 85, 278286.
  • Philip, J. R., and D. A. Farrell (1964), General solution of the infiltration-advance problem in irrigation hydraulics, J. Geophys. Res., 69, 621631, doi:10.1029/JZ069i004p00621.
  • Prudic, D. E., R. G. Niswonger, J. L. Wood, and K. K. Henkelman (2003), Trout Creek—Estimating flow duration and seepage losses along an intermittent stream tributary to the Humboldt River, Lander and Humboldt counties, Nevada, in Heat as a Tool for Studying the Movement of Ground Water Near Streams, edited by D. A. Stonestrom, and J. Constantz, U.S. Geol. Surv. Circ., 1260, 5771.
  • Riggs, H. C. (1972), Low flow investigations, U.S. Geol. Surv. Tech. Water Resour. Invest. Book 4, Chap. 1, 18 pp.
  • Ronan, A. D., D. E. Prudic, C. E. Thodal, and J. Constantz (1998), Field study of diurnal temperature effects of infiltration and variably-saturated flow beneath an ephemeral stream, Water Resour. Res., 34, 21372152, doi:10.1029/98WR01572.
  • Shepard, J. S., W. W. Wallender, and J. W. Hopmans (1993), One-point method for estimating furrow infiltration, Trans. ASAE, 36, 395404.
  • Shinn, E. A., C. D. Reich, and H. T. Donald (2002), Seepage meters and Bernoulli's revenge, Estuaries, 25, 126132.
  • Smith, R. E., C. Corradini, and F. Melone (1993), Modeling infiltration for multistorm runoff events, Water Resour. Res., 29, 133134, doi:10.1029/92WR02093.
  • Sophocleous, M., and S. P. Perkins (2000), Methodology and application of combined watershed and groundwater model in Kansas, J. Hydrol., 236, 185201, doi:10.1016/S0022-1694(00)00293-6.
  • Stonestrom, D. A., D. E. Prudic, R. J. Laczniak, and K. C. Akstin (2004), Tectonic, climatic, and land-use controls on groundwater recharge in an arid alluvial basin: Amargosa Desert, U.S.A. in Groundwater Recharge in a Desert Environment: The Southwestern United States, Water Sci. Appl. Ser., vol. 9, edited by J. F. Hogan, F. M. Philips, and B. R. Scanlon, pp. 2947, AGU, Washington, D. C.
  • Tanko, D. J., and P. A. Glancy (2001), Flooding in the Amargosa River drainage basin, February 23–24, 1998, southern Nevada and eastern California, including the Nevada Test Site, U.S. Geol. Surv. Fact Sheet, 036-01, 4 pp.
  • Tchamen, G. W., and R. A. Kahawita (1998), Modeling wetting and drying effects over complex topography, Hydrol. Processes, 12, 11511182, doi:10.1002/(SICI)1099-1085(19980630)12:8<1151::AID-HYP676>3.0.CO;2-Y.
  • U.S. Geological Survey (2000), U.S. GeoData digital elevation models, U.S. Geol. Surv. Fact Sheet, 040-00, 4 pp.
  • Valiani, A., V. Caleffi, and A. Zanni (2002), Case study: Malpasset dam-break simulation using a two-dimensional finite volume method, J. Hydraul. Eng., 128, 460472, doi:10.1061/(ASCE)0733-9429(2002)128:5(460).
  • Winter, T. C., J. W. Harvey, O. L. Franke, and W. M. Alley (1998), Ground water and surface water; a single resource, U.S. Geol. Surv. Circ. 1139, 79 pp.
  • Woolhiser, D. A. (1974), Unsteady Flow in Open Channels: Proceedings of Institute on Unsteady Flow in Open Channels, Colorado State University, Water Resour. Publ., Fort Collins, Colo.