SEARCH

SEARCH BY CITATION

References

  • Abrahamsen, P., and F. E. Benth (2001), Kriging with inequality constraints, Math. Geol., 33, 719744.
  • Armstrong, M., A. G. Galli, G. Le Loc'h, F. Geffroy, and R. Eschard (2003), Plurigaussian Simulations in Geosciences, Springer-Verlag, Berlin.
  • Balakrishnan, S., A. Roy, M. G. Ierapetritou, G. P. Flach, and P. G. Georgopoulos (2003), Uncertainty reduction and characterization for complex environmental fate and transport models: An empirical Bayesian framework incorporating the stochastic response surface method, Water Resour. Res., 39(12), 1350, doi:10.1029/2002WR001810.
  • Barnes, R. J., and K. H. You (1992), Adding bounds to kriging, Math. Geol., 24, 171176.
  • Bates, B. C., and E. P. Campbell (2001), A Markov chain Monte Carlo scheme for parameter estimation and inference in conceptual rainfall-runoff modeling, Water Resour. Res., 37, 937947.
  • Campbell, E. P., et al. (1999), A Bayesian approach to parameter estimation and pooling in nonlinear flood event models, Water Resour. Res., 35, 211220.
  • Casella, G., and E. I. George (1992), Explaining the Gibbs sampler, Am. Stat., 46, 167174.
  • Chen, J. S., S. Hubbard, Y. Rubin, C. Murray, E. Roden, and E. Majer (2004), Geochemical characterization using geophysical data and Markov Chain Monte Carlo methods: A case study at the South Oyster bacterial transport site in Virginia, Water Resour. Res., 40(12), W12412, doi:10.1029/2003WR002883.
  • Chen, J., S. Hubbard, J. Peterson, K. Williams, M. Fienen, P. Jardine, and D. Watson (2006), Development of a joint hydrogeophysical inversion approach and application to a contaminated fractured aquifer, Water Resour. Res., 42(6), W06425, doi:10.1029/2005WR004694.
  • Chib, S., and E. Greenberg (1995), Understanding the Metropolis-Hastings Algorithm, Am. Stat., 49, 327335.
  • Chilès, J. P., and P. Delfiner (1999), Geostatistics: Modeling Spatial Uncertainty, John Wiley, New York.
  • De Oliveira, V. (2005), Bayesian inference and prediction of Gaussian random fields based on censored data, J. Comput. Graph. Stat., 14, 95115.
  • Deutsch, C. V. (1996), Correcting for negative weights in ordinary kriging, Comput. Geosci., 22, 765773.
  • Diggle, P. J., and P. J. Ribeiro Jr. (2007), Model-Based Geostatistics, Springer-Verlag, New York.
  • Dubrule, O., and C. Kostov (1986), An interpolation method taking into account inequality constraints. 1. Methodology, Math. Geol., 18, 3351.
  • Environmental Protection Agency (2003), Downloading Data from the STORET Warehouse: An Exercise. (Available at http://www.epa.gov/storet/updates.html).
  • Fienen, M. N., P. K. Kitanidis, D. Watson, and P. Jardine (2004), An application of Bayesian inverse methods to vertical deconvolution of hydraulic conductivity in a heterogeneous aquifer at Oak Ridge National Laboratory, Math. Geol., 36, 101126.
  • Freulon, X. (1994), Conditional simulation of a Gaussian random vector with nonlinear and/or noisy observations, in Geostatistical Simulations, pp. 5771, Kluwer Acad. Publishers, Dordrecht, Netherlands.
  • Freulon, X., and C. de Fouquet (1993). Conditioning a Gaussian model with inequalities, in Proceedings of Geostatistics Troia'92, vol. 1, pp. 201212, Kluwer Acad. Publishers, Dordrecht, Netherlands.
  • Fridley, B. L., and P. Dixon (2007), Data augmentation for a Bayesian spatial model involving censored observations, Environmetrics, 18, 107123.
  • Gamerman, D. (1997), Markov Chain Monte Carlo, Chapman and Hall, London.
  • Gelfand, A. E., A. F. M. Smith, and T. M. Lee (1992), Bayesian-analysis of constrained parameter and truncated data problems using Gibbs sampling, J. Am. Stat. Assoc., 87, 523532.
  • Gelman, A., J. B. Carlin, H. S. Stern, and D. B. Rubin (1995), Bayesian Data Analysis, Chapman and Hall, London.
  • Geman, S., and D. Geman (1984), Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images, IEEE T. Pattern Anal., 6, 721741.
  • Harbaugh, A. W., and M. G. McDonald (1996), User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model, U.S. Geological Survey Open-File Report 96–485, 56 pp.
  • Hastings, W. K. (1970), Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57(1), 97109.
  • Journel, A. G. (1986), Constrained interpolation and qualitative information - the soft kriging approach, Math. Geol., 18, 269305.
  • Karlin, S., and H. M. Taylor (1975), A First Course in Stochastic Processes, Academic Press, San Diego, Calif.
  • Kitanidis, P. K. (1997), Introduction to Geostatistics Applications in Hydrogeology, 249 pp., Cambridge Univ. Press, New York.
  • Kitanidis, P. K., and K. F. Shen (1996), Geostatistical interpolation of chemical concentration, Adv. Water Resour., 19, 369378.
  • Lantuéjoul, C. (2002), Geostatistical Simulation: Models and Algorithms, Springer-Verlag, Berlin.
  • Leuangthong, O., and C. V. Deutsch (2004), Transformation of residuals to avoid artifacts in geostatistical modelling with a trend, Math. Geol., 36, 287305.
  • Marshall, L., D. Nott, and A. Sharma (2004), A comparative study of Markov chain Monte Carlo methods for conceptual rainfall-runoff modeling, Water Resour. Res., 40(2), W02501, doi:10.1029/2003WR002378.
  • McDonald, M. G., and A. W. Harbaugh (1988), A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model, U.S. Geological Survey Techniques of Water-Resources Investigations, book 6, chap. A1, 586 pp.
  • Michalak, A. M., and P. K. Kitanidis (2002), Application of Bayesian inference methods to inverse modeling for contaminant source identification at Gloucester Landfill, Canada, in Computational Methods in Water Resources XIV, vol. 2, edited by S. M. Hassanizadeh et al., pp. 12591266, Elsevier, Amsterdam, Netherlands.
  • Michalak, A. M., and P. K. Kitanidis (2003), A method for enforcing parameter nonnegativity in Bayesian inverse problems with an application to contaminant source identification, Water Resour. Res., 39(2), 1033, doi:10.1029/2002WR001480.
  • Michalak, A. M., and P. K. Kitanidis (2004a), Application of geostatistical inverse modeling to contaminant source identification at Dover AFB, Delaware, J. Hydraul. Res., 42, 918.
  • Michalak, A. M., and P. K. Kitanidis (2004b), Estimation of historical groundwater contaminant distribution using the adjoint state method applied to geostatistical inverse modeling, Water Resour. Res., 40(8), W08302, doi:10.1029/2004WR003214.
  • Michalak, A. M., and P. K. Kitanidis (2005), A method for the interpolation of nonnegative functions with an application to contaminant load estimation, Stoch. Env. Res. Risk A, 19, 823, doi:10.1007/s00477-004-0189-1.
  • Militino, A. F., and M. D. Ugarte (1999), Analyzing censored spatial data, Math. Geol., 31, 551561.
  • Robert, C. P. (1995), Simulation of truncated normal variables, Stat. Comput., 5, 121125.
  • Robert, C. P., and G. Casella (2004), Monte Carlo Statistical Methods, 2nd ed., Springer-Verlag, New York.
  • Saito, H., and P. Goovaerts (2000), Geostatistical interpolation of positively skewed and censored data in a dioxin-contaminated site, Environ. Sci. Technol., 34, 42284235.
  • Smith, A. F. M., and G. O. Roberts (1993), Bayesian computation via the Gibbs sampler and related Markov-chain Monte Carlo methods, J. R. Stat. Soc., B, 55, 323.
  • Snodgrass, M. F., and P. K. Kitanidis (1997), A geostatistical approach to contaminant source identification, Water Resour. Res., 33, 537546.
  • Sun, A. Y. (2007), A robust geostatistical approach to contaminant source identification, Water Resour. Res., 43(2), W02418, doi:10.1029/2006WR005106.
  • Sun, A. Y., S. L. Painter, and G. W. Wittmeyer (2006), A constrained robust least squares approach for contaminant release history identification, Water Resour. Res., 42(4), W04414, doi:10.1029/2005WR004312.
  • Szidarovszky, F., E. Y. Baafi, and Y. C. Kim (1987), Kriging without negative weights, Math. Geol., 19, 549559.
  • USGS (2001), Daily Streamflow for the Nation USGS 10317400 N F Humboldt R NR N Fork, NV. (Available at http://www.water.usgs.gov/nwis/discharge/?site_no10317400, accessed 11/01/01).
  • Vrugt, J. A., H. V. Gupta, L. A. Bastidas, W. Bouten, and S. Sorooshian (2003a), Effective and efficient algorithm for multiobjective optimization of hydrologic models, Water Resour. Res., 39(8), 1214, doi:10.1029/2002WR001746.
  • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003b), A shuffled complex evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters, Water Resour. Res., 39(8), 1201, doi:10.1029/2002WR001642.
  • Walvoort, D. J. J., and J. J. de Gruijter (2001), Compositional kriging: A spatial interpolation method for compositional data, Math. Geol., 33, 951966.
  • Yoo, E.-H., and P. C. Kyriakidis (2006), Area-to-point kriging with inequality-type data, J. Geograph. Syst., 8, 357390, doi:10.1007/s10109-006-0036-7.
  • Zheng, C. (1990), MT3D, A modular three-dimensional transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems, Report to the Kerr Environmental Research Laboratory, US Environmental Protection Agency, Ada, Oklahoma.
  • Zheng, C., and P. P. Wang (1999), MT3DMS: A modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems; Documentation and User's Guide, Contract Report SERDP-99-1, U. S. Army Engineer Research and Development Center, Vicksburg, MS.