SEARCH

SEARCH BY CITATION

References

  • Alexander, R. B., and R. A. Smith (1990), County-level estimates of nitrogen and phosphorus fertilizer use in the United States, 1945 to 1985, U.S. Geol. Surv. Open File Rep. 90-130, 12 pp.
  • Alley, W. M. (2006), Tracking U.S. ground water: Reserves for the future? Environment, 48, 1025.
  • Appleyard, S. (1995), The impact of urban development on recharge and groundwater quality in a coastal aquifer near Perth, Western Australia, Hydrogeol. J., 3, 6575, doi:10.1007/s100400050072.
  • Auch, R., J. Taylor, and W. Acevedo (2004), Urban growth in American cities, U.S. Geol. Surv. Circ. 1252, 52 pp. (Available at http://pubs.usgs.gov/circ/2004/circ1252/).
  • Barber, C., C. J. Otto, L. E. Bates, and K. J. Taylor (1996), Evaluation of the relationship between land-use changes and groundwater quality in a water-supply catchment, using GIS technology: The Gwelup wellfield, Western Australia, Hydrogeol. J., 4, 619, doi:10.1007/s100400050078.
  • Benker, E., G. B. Davis, S. Appleyard, D. A. Berry, and T. R. Power (1996), Trichloroethene (TCE) contamination in an unconfined sand aquifer underlying a residential area of Perth, Western Australia, Hydrogeol. J., 4, 2029, doi:10.1007/s100400050080.
  • Böhlke, J. K. (2002), Groundwater recharge and agricultural contamination, Hydrogeol. J., 10, 153179, doi:10.1007/s10040-001-0183-3. (Correction, Hydrogeol. J., 10, 438–439, 2002.).
  • Brawley, J. W., G. Collins, J. N. Kremer, C. H. Sham, and I. Valiela (2000), A time-dependent model of nitrogen loading to estuaries from coastal watersheds, J. Environ. Qual., 29, 14481461.
  • Bruinsma, J. (Ed.) (2003), World Agriculture: Towards 2015/2030, an FAO Study, Earthscan, London.
  • Burow, K. R., N. M. Dubrovsky, and J. L. Shelton (2007), Temporal trends in concentrations of DBCP and nitrate in groundwater in the eastern San Joaquin Valley, California, USA, Hydrogeol. J., 15, 9911007, doi:10.1007/s10040-006-0148-7.
  • Burow, K. R., B. C. Jurgens, L. Kauffman, B. A. Dalgish, S. P. Phillips, and J. L. Shelton (2008), Simulations of ground-water flow and particle pathline analysis in the zone of contribution of a public-supply well in Modesto, eastern San Joaquin Valley, California, U.S. Geol. Surv. Sci. Invest. Rep., 2008-5035, 47 pp. (Available at http://pubs.usgs.gov/sir/2008/5035/).
  • California Department of Water Resources (2000), Explanations of land use attributes used in database files associated with shape files: Land and water use section, 11 pp., Sacramento, Calif.
  • Carle, S. F. (1999), T-PROGS: Transition Probability Geostatistical Software: User's Manual, 76 pp., Univ. of Calif., Davis, Calif.
  • Carle, S. F., E. M. LaBolle, G. S. Weissmann, D. VanBrocklin, and G. E. Fogg (1998), Geostatistical simulation of hydrostratigraphic architecture, a transition probability/Markov approach, in Concepts in Hydrogeology and Environmental Geology, SEPM Spec. Publ., vol. 1, edited by G. S. Fraser, and J. M. Davis, pp. 147170, Soc. for Sediment. Geol., Tulsa, Okla.
  • Chapelle, F. H., and P. M. Bradley (1999), Selecting remediation goals by assessing the natural attenuation capacity of ground-water systems, in Subsurface Contamination from Point Sources, vol. 3, U.S. Geological Survey Toxic Substances Hydrology Program—Proceedings of the Technical Meeting, Charleston, South Carolina, March 8–12, 1999, edited by D. W. Morganwalp, and H. T. Buxton, U.S. Geol. Surv. Water Resour. Invest. Rep., 99-4018C, 719.
  • Clark, B. R., M. K. Landon, L. J. Kauffman, and G. Z. Hornberger (2007), Simulations of ground-water flow, transport, age, and particle tracking at the local scale near York, Nebraska, for a study of transport of anthropogenic and natural contaminants (TANC) to public-supply wells, U.S. Geol. Surv. Sci. Invest. Rep., 2007-5068, 47 pp. (Available at http://pubs.usgs.gov/sir/2007/5068/).
  • Crandall, C. (2007), Hydrogeologic settings and ground-water flow simulation of the northern Tampa Bay regional study area, Florida, in Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells—Studies Begun in 2001, edited by S. S. Paschke, U.S. Geol. Surv. Prof. Pap., 1737-A, 5-15-30. (Available at http://pubs.usgs.gov/pp/2007/1737a/Section5.pdf).
  • Eberts, S. M., J. K. Böhlke, and L. J. Kauffman (2006), Application of ground water dating techniques for evaluating the susceptibility of aquifers and public-supply wells to contamination, paper presented at Fifth National Monitoring Conference, Natl. Water Quality Monit. Counc., San Jose, Calif.
  • European Commission (2007), Common implementation strategy for the water framework directive (2000/60/EC): Guidance on groundwater in drinking water protected areas, Guidance Doc. 16, 34 pp., Brussels. (Available at http://circa.europa.eu/Public/irc/env/wfd/library?l =/framework_directive/guidance_documents/groundwater_dwpaspdf/_EN_1.0_&a = d).
  • Focazio, M. J., D. W. Kolpin, and E. T. Furlong (2004), Occurrence of human pharmaceuticals in water resources in the United States: A review, in Pharmaceuticals in the Environment: Sources, Fate, Effects, and Risks, 2nd ed., edited by K. Kummerer, pp. 91102, Springer, New York.
  • Fogg, G. E., and E. M. LaBolle (2006), Motivation of synthesis, with an example on groundwater quality sustainability, Water Resour. Res., 42, W03S05, doi:10.1029/2005WR004372.
  • Fogg, G. E., E. M. LaBolle, and G. S. Weissmann (1999), Groundwater vulnerability assessment: Hydrogeologic perspective and example from Salinas Valley, California, in Assessment of Non-Point Source Pollution in the Vadose Zone, Geophys. Monogr. Ser, vol. 108, edited by D. L. Corwin, K. Loague, and T. R. Ellsworth, pp. 4561, AGU, Washington, D. C.
  • Franke, O. L., T. E. Reilly, D. W. Pollock, and J. W. LaBaugh (1998), Estimating areas contributing recharge to wells–Lessons learned from previous studies, U.S. Geol. Surv. Circ. 1174, 14 pp.
  • Gilliom, R. J.et al. (2006), Pesticides in the nation's streams and ground water, 1992–2001, U.S. Geol. Surv. Circ. 1291, 172 pp.
  • Goss, M. J., D. A. J. Barry, and D. L. Rudolph (1998), Contamination in Ontario farmstead domestic wells and its association with agriculture: 1. Results from drinking water wells, J. Contam. Hydrol., 32, 267293, doi:10.1016/S0169-7722(98)00054-0.
  • Grischek, T., W. Nestler, D. Piechniczek, and T. Fischer (1996), Urban groundwater in Dresden, Germany, Hydrogeol. J., 4, 4863, doi:10.1007/s100400050088.
  • Gurdak, J. J., and S. L. Qi (2006), Vulnerability of recently recharged ground water in the High Plains aquifer to nitrate contamination, U.S. Geol. Surv. Sci. Invest. Rep. 2006-5050, 39 pp.
  • Halford, K. J., and R. T. Hanson (2002), User guide for the drawdown-limited, multi-node well (MNW) package for the U.S. Geological Survey's modular three-dimensional finite-difference ground-water flow model, versions MODFLOW-96 and MODFLOW-2000, U.S. Geol. Surv. Open File Rep, 02-293, 33 pp.
  • Harbaugh, A. W., E. R. Banta, M. C. Hill, and M. G. McDonald (2000), MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—User guide to modularization concepts and the ground-water flow process, U.S. Geol. Surv. Open File Rep. 00-92, 121 pp.
  • Hill, M. C., E. R. Banta, A. W. Harbaugh, and E. R. Anderman (2000), MODFLOW-2000, the U.S. Geological Survey Modular Ground-Water Model—User guide to the observation, sensitivity, and parameter estimation processes and three post-processing programs, U.S. Geol. Surv. Open File Rep. 00-184, 209 pp.
  • Hiscock, K. M. (2005), Hydrogeology: Principles and Practice, 389 pp., Blackwell Sci., Oxford, U.K.
  • Hiscock, K., A. Lovett, A. Saich, T. Dockery, P. Johnson, C. Sandu, G. Sünnenberg, K. Appleton, B. Harris, and J. Greaves (2007), Modeling land-use scenarios to reduce groundwater nitrate pollution: The European Water4All project, Q. J. Eng. Geol. Hydrogeol., 40, 417434, doi:10.1144/1470-9236/07-054.
  • Holm, J. V., K. Rügge, P. L. Bjerg, and T. H. Christensen (1995), Occurrence and distribution of pharmaceutical organic compounds in the groundwater downgradient of a landfill (Grindsted, Denmark), Environ. Sci. Technol., 29, 14151420, doi:10.1021/es00005a039.
  • Howard, K. W. F., N. Eyles, and S. Livingstone (1996), Municipal landfilling practice and its impact on groundwater resources in and around urban Toronto, Canada, Hydrogeol. J., 4, 6479, doi:10.1007/s100400050092.
  • Hutson, S. S., N. L. Barber, J. F. Kenny, K. S. Linsey, D. S. Lumia, and M. A. Maupin (2004), Estimated use of water in the United States in 2000, U.S. Geol. Surv. Circ. 1268, 46 pp.
  • Kass, A., I. Gavrieli, Y. Yechieli, A. Vengosh, and A. Starinsky (2005), The impact of freshwater and wastewater irrigation on the chemistry of shallow groundwater: A case study from the Israeli Coastal Aquifer, J. Hydrol., 300, 314331, doi:10.1016/j.jhydrol.2004.06.013.
  • Katz, B. G., C. A. Crandall, P. A. Metz, W. S. McBride, and M. P. Berndt (2007), Chemical characteristics, water sources and pathways, and age distribution of ground water in the contributing area of a public-supply well near Tampa, Florida, 2002–05, U.S. Geol. Surv. Sci. Invest. Rep. 2007-5139, 85 pp. (Available at http://pubs.usgs.gov/sir/2007/5139/).
  • Kauffman, L. J., A. L. Baehr, M. A. Ayers, and P. E. Stackelberg (2001), Effects of land use and travel time on the distribution of nitrate in the Kirkwood-Cohansey aquifer system in southern New Jersey, U.S. Geol. Surv. Water Resour. Invest. Rep. 01-4117, 49 pp.
  • Kaufmann, R. K., K. C. Seto, A. Schneider, Z. Liu, L. Zhou, and W. Wang (2007), Climate response to rapid urban growth: Evidence of a human-induced precipitation deficit, J. Clim., 20, 22992306, doi:10.1175/JCLI4109.1.
  • Landon, M. K., and M. J. Turco (2007), Hydrogeologic setting and ground-water flow simulation of the eastern High Plains Regional Study Area, Nebraska, in Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells—Studies Begun in 2001, edited by S. S. Paschke, U.S. Geol. Surv. Prof. Pap., 1737-A, pp. 8-18-28. (Available at http://pubs.usgs.gov/pp/2007/1737a/Section8.pdf).
  • Lerner, D. N., and M. H. Barrett (1996), Urban groundwater issues in the United Kingdom, Hydrogeol. J., 4, 8089, doi:10.1007/s100400050096.
  • Lyford, F. P., C. S. Carlson, C. J. Brown, and J. J. Starn (2007), Hydrogeologic setting and ground-water flow simulation of the Pomperaug River basin regional study area, Connecticut, in Hydrogeologic Settings and Ground-Water Flow Simulations for Regional Studies of the Transport of Anthropogenic and Natural Contaminants to Public-Supply Wells—Studies Begun in 2001, edited by S. S. Paschke, U.S. Geol. Surv. Prof. Pap., 1737-A, pp. 6-16-26. (Available at http://pubs.usgs.gov/pp/2007/1737a/Section6.pdf).
  • Macler, B. A., and J. C. Merkle (2000), Current knowledge on groundwater microbial pathogens and their control, Hydrogeol. J., 8, 2940, doi:10.1007/PL00010972.
  • McMahon, P. B., J. K. Böhlke, and S. C. Christenson (2004), Geochemistry, radiocarbon ages, and paleorecharge conditions along a transect in the central High Plains aquifer, southwestern Kansas, USA, Appl. Geochem., 19, 16551686, doi:10.1016/j.apgeochem.2004.05.003.
  • McMahon, P. B., K. F. Dennehy, B. W. Bruce, J. K. Böhlke, R. L. Michel, J. J. Gurdak, and D. B. Hurlbut (2006), Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States, Water Resour. Res., 42, W03413, doi:10.1029/2005WR004417.
  • McMahon, P. B., J. K. Böhlke, L. J. Kauffman, K. L. Kipp, M. K. Landon, C. A. Crandall, K. R. Burow, and C. J. Brown (2008), Source and transport controls on the movement of nitrate to public supply wells in selected principal aquifers of the United States, Water Resour. Res., 44, W04401, doi:10.1029/2007WR006252.
  • Nolan, B. T., and K. J. Hitt (2003), Nutrients in shallow ground waters beneath relatively undeveloped areas in the conterminous United States, U.S. Geol. Surv. Water Resour. Invest. Rep., 02-4289, 17 pp.
  • Nolan, B. T., and K. J. Hitt (2006), Vulnerability of shallow groundwater and drinking-water wells to nitrate in the United States, Environ. Sci. Technol., 40, 78347840, doi:10.1021/es060911u.
  • Osenbrück, K., S. Fiedler, K. Knöller, S. M. Weise, J. Sültenfuß, H. Oster, and G. Strauch (2006), Timescales and development of groundwater pollution by nitrate in drinking water wells of the Jahna-Aue, Saxonia, Germany, Water Resour. Res., 42, W12416, doi:10.1029/2006WR004977.
  • Phillips, S. P., C. T. Green, K. R. Burow, J. L. Shelton, and D. L. Rewis (2007), Simulation of multiscale ground-water flow in part of the northeastern San Joaquin Valley, California, U.S. Geol. Surv. Sci. Invest. Rep., 2007-5009, 43 pp. (Available at http://pubs.usgs.gov/sir/2007/5009/pdf/sir_2007-5009.pdf).
  • Plummer, L. N., L. M. Bexfield, S. K. Anderholm, W. E. Sanford, and E. Busenberg (2004), Hydrochemical tracers in the middle Rio Grande Basin, USA: 1. Conceptualization of groundwater flow, Hydrogeol. J., 12, 359388, doi:10.1007/s10040-004-0324-6.
  • Poeter, E. P., M. C. Hill, E. R. Banta, S. Mehl, and S. Christensen (2005), UCODE_2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation, U.S. Geol. Surv. Tech. Methods, Book 6, Chap. A11, 283 pp.
  • Pollack, D. W. (1994), User's guide for MODPATH/MOD-PATH-PLOT, version 3—A particle tracking post-processing package for MODFLOW, the U.S. Geological Survey finite-difference ground-water flow model, U.S. Geol. Surv. Open File Rep., 94-464.
  • Powell, K. L., R. G. Taylor, A. A. Cronin, M. H. Barrett, S. Pedley, J. Sellwood, S. A. Trowsdale, and D. N. Lerner (2003), Microbial contamination of two urban sandstone aquifers in the UK, Water Res., 37, 339352, doi:10.1016/S0043-1354(02)00280-4.
  • Reilly, T. E., O. L. Franke, and G. D. Bennett (1989), Bias in groundwater samples caused by wellbore flow, J. Hydraul. Eng., 115, 270276.
  • Rivers, C. N., M. H. Barrett, K. M. Hiscock, P. F. Dennis, N. A. Feast, and D. N. Lerner (1996), Use of nitrogen isotopes to identify nitrogen contamination of the Sherwood Sandstone aquifer beneath the city of Nottingham, United Kingdom, Hydrogeol. J., 4, 90102, doi:10.1007/s100400050099.
  • Rock, G., and H. Kupfersberger (2002), Numerical delineation of transient capture zones, J. Hydrol., 269, 134149, doi:10.1016/S0022-1694(02)00238-X.
  • Ruddy, B. C., D. L. Lorenz, and D. K. Mueller (2006), County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982–2001, U.S. Geol. Surv. Sci. Invest. Rep., 2006-5012, 17 pp.
  • Scanlon, B. R., R. C. Reedy, D. A. Stonestrom, D. E. Prudic, and K. F. Dennehy (2005), Impact of land use and land cover change on groundwater recharge and quality in the southwestern U.S. Global Change Biol., 11, 15771593, doi:10.1111/j.1365-2486.2005.01026.x.
  • Scanlon, B. R., I. Jolly, M. Sophocleous, and L. Zhang (2007), Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality, Water Resour. Res., 43, W03437, doi:10.1029/2006WR005486.
  • Spalding, R. F., and M. E. Exner (1993), Occurrence of nitrate in groundwater—A review, J. Environ. Qual., 22, 392402.
  • Starn, J. J., and C. J. Brown (2007), Simulations of ground-water flow and residence time near Woodbury, Connecticut, U.S. Geol. Surv. Sci. Invest. Rep., 2007-5210, 56 pp. (Available at http://pubs.usgs.gov/sir/2007/5210/pdf/report_1-28-08_508.pdf).
  • Stonestrom, D. A., D. E. Prudic, R. J. Laczniak, K. C. Akstin, R. A. Boyd, and K. K. Henkelman (2003), Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa River channel, Amargosa Desert, Nye County, Nevada, U.S. Geol. Surv. Open File Rep., 03-104, 82 pp.
  • Strebel, O., W. H. M. Duynisveld, and J. Böttcher (1989), Nitrate pollution of groundwater in western Europe, Agric. Ecosyst. Environ., 26, 189214, doi:10.1016/0167-8809(89)90013-3.
  • Sturchio, N. C., et al. (2004), One million year old groundwater in the Sahara revealed by krypton-81 and chlorine-36, Geophys. Res. Lett., 31, L05503, doi:10.1029/2003GL019234.
  • Stute, M., et al. (2007), Hydrological control of As concentrations in Bangladesh groundwater, Water Resour. Res., 43, W09417, doi:10.1029/2005WR004499.
  • Thomas, M. A. (2007), The association of arsenic with redox conditions, depth, and ground-water age in the glacial aquifer system of the northern United States, U.S. Geol. Surv. Sci. Invest. Rep., 2007-5036, 26 pp.
  • U.S. Department of Agriculture (2007), US ethanol expansion driving changes throughout the agricultural sector, Amber Waves, 5, 1016. (Available at http://www.ers.usda.gov/AmberWaves/September07/Features/Ethanol.htm).
  • Vogelmann, J. E., S. M. Howard, L. Yang, C. R. Larson, B. K. Wylie, and N. Van Driel (2001), Completion of the 1990's national land cover dataset for the conterminous United States from Landsat Thematic Mapper data and ancillary data sources, Photogramm. Eng. Remote Sens., 67, 650662.
  • Wassenaar, L. I. (1995), Evaluation of the origin and fate of nitrate in the Abbotsford aquifer using the isotopes of 15Nand 18O in NO3, Appl. Geochem., 10, 391405, doi:10.1016/0883-2927(95)00013-A.
  • Weissmann, G. S., Y. Zhang, E. M. LaBolle, and G. E. Fogg (2002), Dispersion of groundwater age in an alluvial aquifer system, Water Resour. Res., 38(10), 1198, doi:10.1029/2001WR000907.
  • Zhang, W. L., Z. X. Tian, N. Zhang, and X. Q. Li (1996), Nitrate pollution of groundwater in northern China, Agric. Ecosyst. Environ., 59, 223231, doi:10.1016/0167-8809(96)01052-3.
  • Zingoni, E., D. Love, C. Magadza, W. Moyce, and K. Musiwa (2005), Effects of a semi-formal urban settlement on groundwater quality in Epworth (Zimbabwe): Case study and groundwater quality zoning, Phys. Chem. Earth, 30, 680688.
  • Zogorski, J. S., J. M. Carter, T. Ivahnenko, W. W. Lapham, M. J. Moran, B. L. Rowe, P. J. Squillace, and P. L. Toccalino (2006), Volatile organic compounds in the nation's drinking-water supply wells, U.S. Geol. Surv. Circ., 1292, 101 pp. (Available at http://pubs.usgs.gov/circ/circ1292/).