• Arakawa, M., and N. Maeno (1997), Mechanical strength of polycrystalline ice under uniaxial compression, Cold Reg. Sci. Technol., 26, 215229.
  • Barnes, P., D. Tabor, and J. C. F. Walker (1971), The friction and creep of polycrystalline ice, Proc. R. Soc., Ser. A, 324, 127155.
  • Durham, W. B., S. H. Kirby, and L. A. Stern (1992), Effects of dispersed particulates on the rheology of water ice at planetary conditions, J. Geophys. Res., 97(E12), 20,88320,897.
  • Hooke, R. L., B. B. Dahlin, and M. T. Kauper (1972), Creep of ice containing dispersed fine sand, J. Glaciol., 11, 327336.
  • Li, H., M. S. Robinson, and D. M. Jurdy (2005), Origin of Martian northern hemisphere mid-latitude lobate debris aprons, Icarus, 176, 382394.
  • Mangold, N., P. Allemand, P. Duval, Y. Geraud, and P. Thomas (1999), Ice content of martian permafrost deduced from rheology of ice-rock mixtures, Lunar Planet. Sci., XXX, abstract 1016.
  • Mangold, N., P. Allemand, P. Duval, Y. Geraud, and P. Thomas (2002), Experimental and theoretical deformation of ice-rock mixtures: Implications on rheology and ice content of Martian permafrost, Planet. Space Sci., 50, 385401.
  • Mellor, M., and D. M. Cole (1982), Deformation and failure of ice under constant stress or constant strain-rate, Cold Reg. Sci. Technol., 5, 201219.
  • Neakrase, L. D. V., R. Greeley, J. D. Iversen, M. R. Balme, and E. E. Eddlemon (2006), Dust flux within dust devils: Preliminary laboratory simulations, Geophys. Res. Lett., 33, L19S09, doi:10.1029/2006GL026810.
  • Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., 85 pp., Elsevier, Oxford, UK.
  • Schulson, E. M. (1990), The brittle compressive fracture of ice, Acta Metall. Mater., 30, 19631976.
  • Sinha, N. K. (1988), Crack-enhanced creep in polycrystalline material: Strain-rate sensitive strength and deformation of ice, J. Mater. Sci., 23, 44154428.