SEARCH

SEARCH BY CITATION

References

  • Baker, J. W., and D. M. Easty (1950), Hydrolysis of organic nitrates, Nature, 166(156), doi:10.1038/166156a0.
  • Brukner, G., et al. (1993), Uptake of 15NH3 by Picea abies in closed chamber experiments, Isotopes Environ. Health Stud., 29, 7176.
  • Connon, N. W. (1970), Nitrate esters, Eastman Org. Chem. Bull., 42(2), 5.
  • Day, D. A., M. B. Dillon, P. J. Wooldridge, J. A. Thornton, R. S. Rosen, E. C. Wood, and R. C. Cohen (2003), On alkyl nitrates, O3, and the “missing NOy, J. Geophys. Res., 108(D16), 4501, doi:10.1029/2003JD003685.
  • Elser, J. J., et al. (2007), Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems, Ecol. Lett., 10, 11351142.
  • Gessler, A., M. Rienks, and H. Rennenberg (2000), NH3 and NO2 fluxes between beech trees and the atmosphere—Correlation with climatic and physiological parameters, New Phytol., 147, 539560.
  • Gessler, A., M. Rienks, and H. Rennenberg (2002), Stomatal uptake and cuticular adsorption contribute to dry deposition of NH3 and NO2 to needles of adult spruce (Picea abies) trees, New Phytol., 156, 179194.
  • Goodale, C. L., K. Lajtha, K. J. Nadelhoffer, E. W. Boyer, and N. A. Jaworski (2002), Forest nitrogen sinks in large eastern U. S. watersheds: Estimates from forest inventory and an ecosystem model, Biogeochemistry, 57/58, 239266.
  • Guenther, A., et al. (2006), Estimates of global terrestrial isoprene emissions using MEGAN, (Model of Emissions of Gases and Aerosols from Nature), Atmos. Chem. Phys., 6, 31813210.
  • Hanson, P. J., and T. Garten Jr. (1992), Deposition of H15NO3 vapor to white oak, red maple and loblolly pine foliage: Experimental observations and a generalized model, New Phytol., 122, 329337.
  • Hofmann, D., M. Gehre, and K. Jung (2003), Sample preparation techniques for the determination of natural 15N/14N variations in amino acids by gas chromatography-combustion-isotope ratio mass spectrometry (GC-C-IRMS), Isotopes Environ. Health Stud., 39, 233244.
  • Kames, J., and U. Schurath (1992), Alkyl nitrates and bifunctional nitrates of atmospheric interest: Henry's law constants and their temperature dependencies, J. Atmos. Chem., 15, 7995.
  • LeBauer, D. S., and K. K. Treseder (2008), Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed, Ecology, 89(2), 371379.
  • Luo, Y., et al. (2004), Progressive nitrogen limitation of ecosystem responses to rising atmospheric carbon dioxide, Bioscience, 54(8), 731739.
  • Macko, S. A., M. E. Uhle, M. H. Engel, and V. Andrusevich (1997), Stable nitrogen isotope analysis of amino acid enantiomers by gas chromatography/combustion/isotope ratio mass spectrometry, Anal. Chem., 69, 926929.
  • Murphy, J. G., D. A. Day, P. A. Cleary, P. J. Wooldridge, and R. C. Cohen (2006), Observations of the diurnal and seasonal trends in nitrogen oxides in the western Sierra Nevada, Atmos. Chem. Phys., 6, 53215338.
  • Nadelhoffer, K. J., et al. (1999), Nitrogen deposition makes a minor contribution to carbon sequestration in temperate forests, Nature, 398, 145148.
  • Neff, J. C., E. A. Holland, F. J. Dentener, W. H. McDowell, and K. M. Russell (2002), The origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen cycle? Biogeochemistry, 57/58, 99136.
  • Ollinger, S. V., J. D. Aber, R. B. Reich, and R. J. Freuder (2002), Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests, Global Change Biol., 8, 545562.
  • Papen, H., et al. (2002), Chemolithoautotrophic nitrifiers in the phyllosphere of a spruce ecosystem receiving high atmospheric nitrogen input, Curr. Microbiol., 44, 5660.
  • Parrish, D. D., et al. (1993), The total reactive oxidized nitrogen levels and the partitioning between the individual species at six rural sites in eastern North America, J. Geophys. Res., 98, 29272939.
  • Peterson, A. G., et al. (1999), The photosynthesis-leaf nitrogen relationship at ambient and elevated atmospheric carbon dioxide: A meta-analysis, Global Change Biol., 5, 331346.
  • Reich, P. B., et al. (2006), Nitrogen limitation constrains sustainability of ecosystem response to CO2, Nature, 440, 922925.
  • Rhodes, D., A. C. Myers, and G. Jamieson (1981), Gas chromatography-mass spectrometry of N-heptafluorobutyryl isobutyl esters of amino acids in the analysis of the kinetics of [15N]H4+ assimilation in Lemna minor L, Plant Physiol., 68, 11971205.
  • Roberts, J. (1990), The atmospheric chemistry of organic nitrates, Atmos. Environ., 24, 243287.
  • Robertson, R., et al. (1981), Kinetics of solvolysis in water of four secondary alkyl nitrates, Can. J. Chem., 60, 17801785.
  • Schimel, J. P., and J. Bennett (2004), Nitrogen mineralization: Challenges of a changing paradigm, Ecology, 85(3), 591602.
  • Schulz, B., and C. Boyle (2005), The endophytic continuum, Mycol. Res., 109(6), 661686.
  • Sieber, T. N. (2007), Endophytic fungi in forest trees: Are they mutualists? Fungal Biol. Rev., 21, 7589.
  • Sievering, H. (1999), Nitrogen deposition and carbon sequestration, Nature, 400, 629630.
  • Sievering, H., I. Fernandez, J. Lee, J. Hom, and L. Rustad (2000), Forest canopy uptake of atmospheric nitrogen deposition at eastern U.S. conifer sites: Carbon storage implications, Global Biogeochem. Cycles, 14, 11531159.
  • Silfer, J. A., M. H. Engel, S. A. Macko, and E. J. Jumeau (1991), Stable carbon isotope analysis of amino acid enantiomers by conventional isotope ratio mass spectrometry and combined gas chromatography/isotope ratio mass spectrometry, Anal. Chem., 63, 364370.
  • Sparks, J. P., R. K. Monson, K. L. Sparks, and M. Lerdau (2001), Leaf uptake of nitrogen dioxide (NO2) in a tropical wet forest: implications for tropospheric chemistry, Oecologia, 127, 214221.
  • Sparks, J. P., J. M. Roberts, and R. K. Monson (2003), The uptake of gaseous organic nitrogen by leaves: A significant global nitrogen transfer process, Geophys. Res. Lett., 30(23), 2189, doi:10.1029/2003GL018578.
  • Tan, R. X., and W. X. Zou (2001), Endophytes: A rich source of functional metabolites, Nat. Prod. Rep., 18, 448459.
  • Teklemariam, T. A., and J. P. Sparks (2004), Gaseous fluxes of peroxyacetyl nitrate (PAN) into plant leaves, Plant Cell Environ., 27, 11491158.
  • Thornberry, T., et al. (2001), Observations of reactive oxidized nitrogen and speciation of NOy during PROPHET summer 1998 intensive, J. Geophys. Res., 106, 24,35924,386.
  • Townsend, A. R., B. H. Braswell, E. A. Holland, and J. E. Penner (1996), Spatial and temporal patterns in potential terrestrial carbon storage resulting from deposition of fossil fuel derived nitrogen, Ecol. Appl., 6, 806814.
  • Vitousek, P. M., et al. (1997), Human alteration of the global nitrogen cycle: Sources and consequences, Ecol. Appl., 7, 737750.
  • Vose, J. M., and W. T. Swank (1990), Preliminary estimates of foliar absorption of 15N-labelled nitric acid vapor (HNO3) by mature eastern white pine (Pinus strobus), Can. J. For. Res., 20, 857859.
  • Weber, P., et al. (1995), Uptake of atmospheric 15NO2 and its incorporation into free amino acids in wheat (Triticum aestivum L.), Physiol. Plant, 94, 7177.
  • Wilson, D. (2000), Ecology of woody plant endophytes, in Microbial Endophytes, edited by C. W. Bacon, and J. F. White Jr., pp. 389420, Marcel Dekker, New York.
  • Yoneyama, T., O. Ito, and W. M. H. G. Engelaar (2003), Uptake, metabolism and distribution of nitrogen in crop plants traced by enriched and natural 15N: Progress over the last 30 years, Phytochem. Rev., 2, 121132.
  • Zak, D. R., K. S. Pregitzer, W. E. Holmes, A. J. Burton, and G. P. Zogg (2004), Anthropogenic N deposition and the fate of 15NO3 in a northern hardwood ecosystem, Biogeochemistry, 69, 143157.