• source model;
  • 2007 Niigata-ken Chusetsu-oki earthquake;
  • nonlinear inversion

[1] We image the rupture history of the 2007 Niigata-ken Chuestu-oki (Japan) earthquake by a nonlinear joint inversion of strong motion and GPS data, retrieving peak slip velocity, rupture time, rise time and slip direction. The inferred rupture model contains two asperities; a small patch near the nucleation and a larger one located 10 ÷ 15 km to the south-west. The maximum slip ranges between 2.0 and 2.5 m and the total seismic moment is 1.6 × 1019 Nm. The inferred rupture history is characterized by rupture acceleration and directivity effects, which are stable features of the inverted models. These features as well as the source-to-receiver geometry are discussed to interpret the high peak ground motions observed (PGA is 1200 gals) at the Kashiwazaki-Kariwa nuclear power plant (KKNPP), situated on the hanging-wall of the causative fault. Despite the evident source effects, predicted PGV underestimates the observed values at KKNPP by nearly a factor of 10.