• Andre, L., et al. (2007), Numerical modeling of fluid-rock chemical interactions at the supercritical CO2-liquid interface during CO2 injection into a carbonate reservoir, the Dogger aquifer (Paris Basin, France), Energy Convers. Manage., 48, 17821797.
  • Bachu, S., and B. Bennion (2007), Effects of in-situ conditions on relative permeability characteristics of CO2-brine systems, Eviron. Geol., 54, 17071722.
  • Benezeth, P., et al. (2007), Dawsonite synthesis and reevaluation of its thermodynamic properties from solubility measurements: Implications for mineral trapping of CO2, Geochim. Cosmochim. Acta, 71, 44384455.
  • Bethke, C. M. (2006), The Geochemist's Workbench Release 6.0, Univ. of Ill. at Urbana-Champaign, Urbana.
  • Carey, W. J., et al. (2007), Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA, Int. J. Greenhouse Gas Control, 1, 7585.
  • Drever, J. I. (1997), The Geochemistry of Natural Waters: Surface and Groundwater Environments, 3rd ed., 436 pp., Prentice Hall, Upper Saddle River, N. J.
  • Druckenmiller, M. L., and M. M. Maroto-Valer (2005), Carbon sequestration using brine of adjusted pH to form mineral carbonates, Fuel Process. Technol., 86, 15991614.
  • Freifeld, B. M., R. C. Trautz, Y. K. Kharaka, T. J. Phelps, L. R. Myer, S. D. Hovorka, and D. J. Collins (2005), The U-tube: A novel system for acquiring borehole fluid samples from a deep geologic CO2 sequestration experiment, J. Geophys. Res., 110, B10203, doi:10.1029/2005JB003735.
  • Goff, F., et al. (1987), Downhole fluid sampling at the SSSDP California State 2–14 Well, Salton Sea, California, Rep. LA-11052-OBES, 32 pp., Los Alamos National Laboratory, Los Alamos, N. M.
  • Gunter, W. D., et al. (2000), Aquifer disposal of acid gases: Modeling of water-rock reactions for trapping of acid wastes, Appl. Geochem., 15, 10851095.
  • Hellevang, H., et al. (2005), Can dawsonite permanently trap CO2? Environ. Sci. Technol., 39, 82818287.
  • Kaszuba, J. P., et al. (2005), Experimental evaluation of mixed fluid reactions between supercritical carbon dioxide and NaCl brine: Relevance to the integrity of a geologic carbon repository, Chem. Geol., 217, 277293.
  • Lin, H., et al. (2007), Experimental evaluation of interactions in supercritical CO2/water/rock mineral system under geologic CO2 sequestration conditions, J. Mater. Sci., 43, 23072315.
  • Moore, J., et al. (2005), Mineralogical and geochemical consequences of the long-term presence of CO2 in natural reservoirs: An example from the Springerville-St. Johns Field, Arizona, and New Mexico, USA, Chem. Geol., 217, 365385.
  • Rosenbauer, R. J., et al. (2005), Experimental investigation of CO2-brine-rock interactions at elevated temperature and pressure: Implications for CO2 sequestration in deep-saline aquifers, Fuel Process. Technol., 86, 15811597.
  • Seyfried, W. E., et al. (Eds.) (1987), Rocking Autoclaves for Hydrothermal Experiments: II. The Flexible Reaction-Cell System., John Wiley, New York.
  • Shiraki, R., and T. L. Dunn (2000), Experimental study on water-rock interactions during CO2 flooding in the Tensleep Formation, Wyoming, USA, Appl. Geochem., 15, 265279.
  • Suto, Y., et al. (2007), Initial behavior of granite in response to injection of CO2-saturated fluid, Appl. Geochem., 22, 202218.