Effective Henry's law constants of glyoxal, glyoxylic acid, and glycolic acid



[1] The Henry's law constants of glyoxal, glycolic acid and glyoxylic acid in pure water were determined over the range of 278 and 308 K for the first time by a bubble column technique. These compounds were chosen because of their perceived involvement in the formation of secondary organic aerosol through in-cloud processing pathways. The experimentally determined Henry's law constants are: glyoxal, KH = 4.19 × 105 × exp[(62.2 × 103/R) × (1/T − 1/298)]; glycolic acid, KH = 2.83 × 104 × exp[(33.5 × 103/R) × (1/T − 1/298)]; and glyoxylic acid, KH = 1.09 × 104 × exp[(40.0 × 103/R) × (1/T − 1/298)]. The Henry's law constants of glyoxal in the presence of sodium chloride and sodium sulfate were also determined at 298 K. While the glyoxal KH is enhanced by less than three times in the presence of chloride in the range of 0.05–4.0 M ionic strength, the presence of sulfate at 0.03 M ionic strength increases the glyoxal KH by 50 times.