SEARCH

SEARCH BY CITATION

References

  • Betterton, E. A. (1992), Henry's law constants of soluble and moderately soluble organic gases: Effects of aqueous phase chemistry, Adv. Environ. Sci. Technol., 24, 150.
  • Betterton, E. A., and M. R. Hoffmann (1988), Henry's law constants of some environmentally important aldehydes, Environ. Sci. Technol., 22, 14151418.
  • Blando, J. D., and B. J. Turpin (2000), Secondary organic aerosol formation in cloud and fog droplets: A literature evaluation of plausibility, Atmos. Environ., 34, 16231632.
  • Gaffney, J. S., and G. I. Senum (1984), Gas-liquid chemistry of natural waters, Pap. 6, edited by L. Newman, Brookhaven Natl. Lab., Upton, N. Y.
  • Ho, S. S. H., and J. Z. Yu (2002), Feasibility of collection and analysis of airborne carbonyls by on-sorbent derivatization and thermal desorption, Anal. Chem., 74, 12321240.
  • Johnson, B. J., E. A. Betterton, and D. Craig (1996), Henry's Law coefficients of formic and acetic acids, J. Atmos. Chem., 24, 113119.
  • Khan, I., P. Brimblecombe, and S. L. Clegg (1995), Solubilities of pyruvic acid and the lower (C1–C6) carboxylic acids. Experimental determination of equilibrium vapour pressures above pure aqueous and salt solutions, J. Atmos. Chem., 22, 285302.
  • Kroll, J. H., N. L. Ng, S. M. Murphy, V. Varutbangkul, R. C. Flagan, and J. H. Seinfeld (2005), Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J. Geophys. Res., 110, D23207, doi:10.1029/2005JD006004.
  • Mackay, D., W. Y. Shiu, and R. P. Sutherland (1979), Determination of air-water Henry's law constants for hydrophobic pollutants, Environ. Sci. Technol., 13, 333337.
  • Matsunaga, S., M. Mochida, and K. Kawamura (2004), Variation on the atmospheric concentrations of biogenic carbonyl compounds and their removal processes in the northern forest at Moshiri, Hokkaido Island in Japan, J. Geophys. Res., 109, D04302, doi:10.1029/2003JD004100.
  • Munger, J. W., J. Collett Jr., B. Daube Jr., and M. R. Hoffmann (1990), Fog water chemistry at Riverside, California, Atmos. Environ., 24, 185205.
  • Munger, J. W., D. J. Jacob, B. C. Danube, L. W. Horowitz, W. C. Keene, and B. G. Heikes (1995), Formaldehyde, glyoxal, and methylglyoxal in air and cloudwater at a rural mountain site in central Virginia, J. Geophys. Res., 100, 93259333.
  • Schwartz, S. E. (1986), Mass-transport considerations pertinent to aqueous phase reactions of gases in liquid-water clouds, in Chemistry of Multiphase Atmospheric Systems, NATO ASI Ser., Ser. G, vol. 6, edited by W. Jaeschke, pp. 415471, Springer, Berlin.
  • Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden (2003), Environmental Organic Chemistry, 2nd ed., John Wiley, Hoboken, N. J.
  • Schweitzer, F., L. Magi, P. Mirabel, and C. George (1998), Uptake rate measurements of methanesulfonic acid and glyoxal by aqueous droplets, J. Phys. Chem. A, 102, 593600.
  • Servant, J., G. Kouadio, B. Cros, and R. Delmas (1991), Carboxylic monoacids in the air of Mayombe forest (Congo): Role of the forest as a source or sink, J. Atmos. Chem., 12, 367380.
  • Smith, R. M., and A. E. Martell (1977), Other Organic Ligands, Crit. Stability Constants, vol. 3, Plenum, New York.
  • Sørensen, P. E., K. Bruhn, and F. Lindeløv (1974), Kinetics and equilibria for the reversible hydration of the aldehyde group on glyoxylic acid, Acta Chem. Scand., Ser. A, 28, 162168.
  • Sorooshian, A., et al. (2006), Oxalic acid in clear and cloudy atmospheres: Analysis of data from International Consortium for Atmospheric Research on Transport and Transformation 2004, J. Geophys. Res., 111, D23S45, doi:10.1029/2005JD006880.
  • vel Leitner, N. K., and M. Dore (1997), Mechanism of the reaction between hydroxyl radicals and glycolic, glyoxylic, acetic and oxalic acids in aqueous solution: Consequence on hydrogen peroxide consumption in the H2O2/UV and O3/H2O2 systems, Water Res., 31, 13831397.
  • Volkamer, R., L. T. Molina, M. J. Molina, T. Shirley, and W. H. Brune (2005), DOAS measurement of glyoxal as an indicator for fast VOC chemistry in urban air, Geophys. Res. Lett., 32, L08806, doi:10.1029/2005GL022616.
  • Volkamer, R., F. San Martini, L. T. Molina, D. Salcedo, J. L. Jimenez, and M. J. Molina (2007), A missing sink for gas-phase glyoxal in Mexico City: Formation of secondary organic aerosol, Geophys. Res. Lett., 34, L19807, doi:10.1029/2007GL030752.
  • Wan, E. C. H., and J. Z. Yu (2007), Analysis of sugars and sugar polyols in atmospheric aerosols by chloride attachment in liquid chromatography/negative ion slectrospray mass spectrometry, Environ. Sci. Technol., 41, 24592466.
  • Warneck, P. (2003), In-cloud chemistry opens pathway to the formation of oxalic acid in the marine atmosphere, Atmos. Environ., 37, 24232427.
  • Wasa, T., and S. Musha (1970), Polarographic behavior of glyoxal and its related compounds, Bull. Univ. Osaka Prefect., Ser. A, 19, 169180.
  • Whipple, E. B. (1970), The structure of glyoxal in water, J. Am. Chem. Soc., 92, 71837186.
  • Yu, J. Z., X. F. Huang, J. Xu, and M. Hu (2005), When aerosol sulfate goes up, so does oxalate: Implication for the formation mechanisms of oxalate, Environ. Sci. Technol., 39, 128133.
  • Zhou, X., and K. Mopper (1990), Apparent partition coefficients of 15 carbonyl compounds between air and seawater and between air and freshwater; implications for air-sea exchange, Environ. Sci. Technol., 24, 18641869.