Vertical mixing at intermediate depths in the Arctic boundary current



[1] Microstructure and hydrographic observations, during September 2007 in the boundary current on the East Siberian continental slope, document upper ocean stratification and along-stream water mass changes. A thin warm surface layer overrides a shallow halocline characterized by a ∼40-m thick temperature minimum layer beginning at ∼30 m depth. Below the halocline, well-defined thermohaline diffusive staircases extended downwards to warm Atlantic Water intrusions found at 200–800 m depth. Observed turbulent eddy kinetic energy dissipations are extremely low (ε < 10−6 W m−3), such that double diffusive convection dominates the vertical mixing in the upper-ocean. The diffusive convection heat fluxes FHdc ∼1 W m−2, are an order of magnitude too small to account for the observed along-stream cooling of the boundary current. Our results implicate circulation patterns and the influence of shelf waters in the evolution of the boundary current waters.