SEARCH

SEARCH BY CITATION

References

  • Abercrombie, R. E., et al. (Eds.) (2006), Earthquakes: Radiated energy and the physics of faulting, Geophys. Monogr. Ser., vol. 170.
  • Allen, J. R. L. (1982), Sedimentary Structures: Their Character and Physical Basis, vol. 2, 663 pp., Elsevier, New York.
  • Allen, J. R. L. (1985), Principles of Physical Sedimentology, George Allen and Unwin, Boston, 272 pp.
  • Andrews, D. J. (2002), A fault constitutive relation accounting for thermal pressurization of pore fluid, J. Geophys. Res., 107(B12), 2363, doi:10.1029/2002JB001942.
  • Anketell, J. M., and S. Dzulynski (1968), Transverse deformational patterns in unstable sediments, Ann. Soc. Geol. Pol., 38, 411416.
  • Anketell, J. M., et al. (1970), On the deformational structures in systems with reversed density gradients, Ann. Soc. Geol. Pol., 40, 330.
  • Bagnold, R. A. (1956), The flow of cohesionless grains in fluids, Philos. Trans. R. Soc. London, Ser. A, 249(964), 235297.
  • Berner, H., et al. (1972), Diapirism in theory and experiment, Tectonophysics, 15, 197218.
  • Bhattacharya, H. N., and S. Bandyopadhyay (1998), Seismites in a Proterozoic tidal succession, Singhbhum, Bihar, India, Sediment. Geol., 119, 239252.
  • Biegel, R. L., and C. G. Sammis (2004), Relating fault mechanics to fault zone structure, Adv. Geophys., 47, 65111.
  • Brodsky, E. E., and H. Kanamori (2001), Elastohydrodynamic lubrication of faults, J. Geophys. Res., 106(B8), 16,35716,374.
  • Brodzikowski, K., and A. Haluszczak (1987), Flame structures and associated deformations in Quaternary glaciolacustrine and glaciodeltaic deposits: Examples from central Poland, Geol. Soc. Lond. Spec. Publ., 29(1), 279286.
  • Byerlee, J. D. (1970), Static and kinetic friction of granite at high normal stress, Inst. J. Rock Mech. Min. Sci., 7, 38213827.
  • Byrne, T. (1984), Early deformation in melange terranes of the Ghost Rocks Formation, Kodiak Islands, Alaska (Special Paper), Geol. Soc. Am., 198, 2151.
  • Chandrasekhar, S. (1961), Hydrodynamic and Hydromagnetic Stability, Dover, Mineola, New York.
  • Clifton, H. E. (1984), Sedimentation units in stratified resedimentation conglomerate, Paleocene submarine canyon fill, Point Lobos, California, paper presented at Sedimentology of Gravels and Conglomerates, Memoir-Canadian Society of Petroleum Geologists, Hamilton, ON, Canada, 22 – 27 Aug. 1982.
  • Collinson, J. (1994), Sedimentary deformational structures, in The Geological Deformation of Sediments, edited by A. Maltman, pp. 95125, Chapman and Hall, London, U.K.
  • Conrad, C. P., and P. Molnar (1997), The growth of Rayleigh-Taylor-type instabilities in the lithosphere for various rheological and density structures, Geophys. J. Int., 129, 95112.
  • Cowan, D. S. (1999), Do faults preserve a record of seismic slip? A field geologist's opinion, J. Struct. Geol., 21(8–9), 9951001.
  • Dasgupta, P. (1998), Recumbent flame structures in the Lower Gondwana rocks of the Jharia Basin, India—A plausible origin, Sediment. Geol., 119, 253261.
  • Davis, G. H., and S. J. Reynolds (1996), Structural Geology of Rocks and Regions, 2nd ed., John Wiley, Hoboken, N. J.
  • Di Toro, G., et al. (2005), Can pseudotachylytes be used to infer earthquake source parameters? An example of limitations in the study of exhumed faults, Tectonophysics, 402(1–4), 320.
  • Dieterich, J. H., and E. T. Onat (1969), Slow finite deformations of viscous solids, J. Geophys. Res., 74(8), 20812088.
  • Fialko, Y., and Y. Khazan (2005), Fusion by earthquake fault friction: Stick or slip? J. Geophys. Res., 110, B12407, doi:10.1029/2005JB003869.
  • Ghiorso, M. S., and R. O. Sack (1995), Chemical mass transfer in magmatic processes. IV: A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 119, 153166.
  • Horváth, Z., et al. (2005), Soft-sediment deformation structures in the Late Miocene-Pleistocene sediments on the pediment of the Mátra Hills (Visonta, Atkár, Verseg): Cryoturbation, load structures or seismites? Tectonophysics, 410, 8195.
  • Johnson, A. M., and R. C. Fletcher (1994), Folding of Viscous Layers: Mechanical Analysis and Interpretation of Structures in Deformed Rock, Columbia Univ. Press, New York.
  • Kelling, G., and E. K. Walton (1957), Load-cast structures; their relationship to upper-surface structures and their mode of formation, Geol. Mag., 94(6), 481490.
  • Lachenbruch, A. H., and J. H. Sass (1980), Heat flow and energetics of the San Andreas fault zone, J. Geophys. Res., 85(B11), 61856222.
  • Lachenbruch, A. H., and J. H. Sass (1992), Heat flow from Cajon Pass, fault strength, and tectonic implications, J. Geophys. Res., 97(B4), 49955015.
  • Lin, A. (2007), Fossil Earthquakes: The Formation and Preservation of Pseudotachylytes, 348 pp., Springer, Berlin, Germany.
  • Lowe, D. R. (1975), Water escape structures in coarse-grained sediments, Sedimentology, 22(2), 157204.
  • Magloughlin, J. F. (1992), Microstructural and chemical-changes associated with cataclasis and frictional melting at shallow crustal levels—The cataclasite pseudotachylyte connection, Tectonophysics, 204(3-4), 243260.
  • Magloughlin, J. F., and J. G. Spray (1992), Frictional melting processes and products in geological-materials—Introduction and discussion, Tectonophysics, 204(3-4), 197206.
  • Major, J. J., and T. C. Pierson (1992), Debris flow rheology: Experimental analysis of fine-grained slurries, Water Resour. Res., 28(3), 841857.
  • Maltman, A. (1994), Introduction and overview, in The Geological Deformation of Sediments, edited by A. Maltman, Chapman and Hall, London, 362 pp.
  • Mastin, L. G., and M. S. Ghioroso (2000), A numerical program for steady-state flow of magma gas mixtures through vertical eruptive conduits, U.S. Geol. Surv. Open File Rep. 00-209.
  • Meneghini, F., et al. (2007), Unraveling seismic deformation in exhumed subduction thrusts: The ultrafine-grained fault rocks of Pasagshak Point, Kodiak Island, AK (abstracts with programs), Geol. Soc. Am., 39, 374.
  • Meneghini, F., et al. (2008), Picturing the seismic cycle along ancient decollement thrusts: The ultrafine-grained fault rocks of Pasagshak Point, Kodiak Island, AK, Trab. Geol., in press.
  • Mikaelian, K. O. (1996), Rayleigh-Taylor instability in finite-thickness fluids with viscosity and surface tension, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 54, 36763680.
  • Nielsen, S., et al. (2008), Frictional melt and seismic slip, J. Geophys. Res., 113, B01308, doi:10.1029/2007JB005122.
  • Otsuki, K., et al. (2003), Fluidization and melting of fault gouge during seismic slip: Identification in the Nojima fault zone and implications for focal earthquake mechanisms, J. Geophys. Res., 108(B4), 2192, doi:10.1029/2001JB001711.
  • Owen, G. (1987), Deformation processes in unconsolidated sands, Geol. Soc. Lond. Spec. Publ., 29(1), 11.
  • Owen, G. (1996), Experimental soft-sediment deformation: Structures formed by the liquefaction of unconsolidated sands and some ancient examples, Sedimentology, 43(2), 279293.
  • Plafker, G., et al. (1994), Geology of the southern Alaska margin, in The Geology of Alaska, The Geology of North America, edited by G. Plafker, and H. C. Berg, pp. 389449, Geol. Soc. of Am., Boulder, Colo.
  • Potter, P. E., and F. J. Pettijohn (1977), Paleocurrents and Basin Analysis, 2nd ed., Springer-Verlag, New York.
  • Rice, J. R. (2006), Heating and weakening of faults during earthquake slip, J. Geophys. Res., 111, B05311, doi:10.1029/2005JB004006.
  • Ronnlund, P. (1989), Viscosity ratio estimates from natural Rayleigh-Taylor instabilities, Terra Nova, 1, 334348.
  • Rowe, C. D. (2007), Snapshots of the Earthquake Cycle: An Approach to Subduction Zone Paleo-Seismicity, 185 pp., UC Santa Cruz, Santa Cruz, Calif.
  • Rowe, C. D., et al. (2005), Large-scale pseudotachylytes and fluidized cataclasites from an ancient subduction thrust fault, Geology, 33, 937940.
  • Sample, J., and D. Fisher (1986), Duplex accretion and underplating in an ancient accretionary complex, Kodiak Islands, Alaska, Geology, 14, 160163.
  • Shaw, H. (1972), Viscosities of magmatic silicate liquids; an empirical method of prediction, Am. J. Sci., 272, 870898.
  • Sibson, R. H., and V. G. Toy (2006), The habitat of fault-generated pseudotachylyte: Presence vs. absence of friction-melt, in Earthquakes: Radiated Energy and the Physics of Faulting, edited by R. Abercrombie et al., AGU, p. 153166, Washington, D. C.
  • Smith, R. B. (1977), Formation of folds, boudinage, and mullions in non-Newtonian materials, Geol. Soc. Am. Bull., 88, 312320.
  • Sonder, I., et al. (2006), Non-Newtonian viscosity of basaltic magma, Geophys. Res. Lett., 33, L02303, doi:10.1029/2005GL024240.
  • Song, C., et al. (2008), A phase diagram for jammed matter, Nature, 453(7195), 629632.
  • Spray, J. G. (2005), Evidence for melt lubrication during large earthquakes, Geophys. Res. Lett., 32, L07301, doi:10.1029/2004GL022293.
  • Turcotte, D. L., and G. Schubert (2002), Geodynamics, 2nd ed., Cambridge Univ. Press, New York.
  • Twiss, R. J., and E. M. Moores (1992), Structural Geology, W. H. Freeman, New York.
  • Ujiie, K., et al. (2007a), Fluidizatian of granular material in a subduction thrust at seismogenic depths, Earth Planet. Sci. Lett., 259, 307318.
  • Ujiie, K., et al. (2007b), Pseudotachylytes in an ancient accretionary complex and implications for melt lubrication during subduction zone earthquakes, J. Struct. Geol., 29, 599613.
  • Visher, G. S., and R. D. Cunningham (1981), Convolute laminations—a theoretical analysis: Example of Pennsylvanian sandstone, Sed. Geol., 28, 175188.
  • Vrolijk, P., P. G. Myers, and J. C. Moore (1988), Warm fluid migration along tectonic melanges in the Kodiak accretionary complex, Alaska, J. Geophys. Res., 93(B9), 10,31310,324.
  • Wenk, H. R., et al. (2000), Pseudotachylites in the eastern peninsular ranges of California, Tectonophysics, 321(2), 253277.
  • Wilcock, W. S. D., and J. A. Whitehead (1991), The Rayleigh-Taylor instability of an embedded layer of low-viscosity fluid, J. Geophys. Res., 96(B7), 12,19312,200.
  • Yuan, F., and V. Prakash (2008), Slip weakening in rocks and analog materials at co-seismic slip rates, J. Mech. Phys. Solids, 56(2), 542560.