SEARCH

SEARCH BY CITATION

References

  • Ba, M. B., R. Frouin, S. E. Nicholson, and G. Dedieu (2001a), Satellite-derived surface radiation budget over the African continent. Part I: Estimation of downward solar irradiance and albedo, J. Clim., 14, 4558.
  • Ba, M. B., S. E. Nicholson, and R. Frouin (2001b), Satellite-derived surface radiation budget over the African continent. Part II: Climatologies of the various components, J. Clim., 14, 6076.
  • Barkstrom, B. R. (1984), The Earth Radiation Budget Experiment (ERBE), Bull. Am. Meteorol. Soc., 65, 11701185.
  • Bishop, J. K. B., W. B. Rossow, and G. Ellsworth (1997), Surface solar irradiance from the International Satellite Cloud Climatology Project 1983–1991, J. Geophys. Res., 102, 68836910.
  • Breon, F.-M., R. Frouin, and C. Gautier (1994), Global shortwave energy budget at the Earths surface from ERBE observations, J. Clim., 7, 309324.
  • Chen, T., W. B. Rossow, and Y. Zhang (2000), Radiative effects of cloud-type variations, J. Clim., 13, 264285.
  • Comstock, J. M., and K. Sassen (2001), Retrieval of cirrus cloud radiative and backscattering properties using combined lidar and infrared radiometer (LIRAD) measurements, J. Atmos. Oceanic Technol., 18, 16581673.
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace (2002), Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts, J. Geophys. Res., 107(D23), 4714, doi:10.1029/2002JD002203.
  • Fu, Q., and K. N. Liou (1992), On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 21392156.
  • Gupta, S. K., W. F. Staylor, W. L. Darnell, A. C. Wilber, and N. A. Ritchey (1993), Seasonal variation of surface and atmospheric cloud radiative forcing over the globe derived from satellite data, J. Geophys. Res., 98, 20,76120,778.
  • Harries, J. E., et al. (2005), The Geostationary Earth Radiation Budget project, Bull. Am. Meteorol. Soc., 86, 949960.
  • Harrison, E. F., P. Minnis, B. R. Barkstrom, V. Ramanathan, R. D. Cess, and G. G. Gibson (1990), Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, Geophys. Res. Lett., 95, 18,68718,703.
  • Hartmann, D. L. (1994), Global Physical Climatology, 411 pp., Academic, New York.
  • Hartmann, D. L., and D. A. Short (1980), On the use of Earth radiation budget statistics for studies of clouds and climate, J. Atmos. Sci., 37, 12331250.
  • Hartmann, D. L., M. Ockert-Bell, and M. L. Michelsen (1992), The effect of cloud type on Earth's energy balance: Global analysis, J. Clim., 5, 12811304.
  • Hatzianastassiou, N., and I. Vardavas (2001), Shortwave radiation budget of the Southern Hemisphere using ISSCP C2 and NCEP-NCAR climatological data, J. Clim., 14, 43194329.
  • Kandel, R., et al. (1998), The ScaRaB Earth radiation budget dataset, Bull. Am. Meteorol. Soc., 79, 765783.
  • Kiehl, J. T., and K. E. Trenberth (1997), Earth's annual global mean energy budget, Bull. Am. Meteorol. Soc., 78, 197208.
  • Lacis, A. A., and V. Oinas (1991), A description of the correlated-k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres, J. Geophys. Res., 96, 90279063.
  • L'Ecuyer, T. S., and G. L. Stephens (2003), The tropical oceanic energy budget from the TRMM perspective. Part I: Algorithm and uncertainties, J. Clim., 16, 19671985.
  • Lee, M.-I., I.-S. Kang, J.-K. Kim, and B. E. Mapes (2001), Influence of cloud-radiation interaction on simulating tropical intraseasonal oscillation with an atmospheric general circulation model, J. Geophys. Res., 106, 14,21914,233.
  • Li, Z., H. G. Leighton, K. Masuda, and T. Takashima (1993), Estimation of SW flux absorbed at the surface from TOA reflected flux, J. Clim., 6, 317330.
  • Liebmann, B., and D. L. Hartmann (1982), Interannual variations of outgoing IR associated with tropical circulation changes during 1974–1978, J. Atmos. Sci., 39, 11531162.
  • Liou, K. N. (2002), An Introduction to Atmospheric Radiation, 2nd ed., 583 pp., Academic, New York.
  • Lo, C., J. M. Comstock, and C. Flynn (2006), An atmospheric radiation measurements value-added product to retrieve optically thin cloud visible optical depths using micropulse lidar, DOE/SC-ARM/TR-077, U.S. Dep. of Energy, Washington, D. C.,
  • McFarlane, S. A., J. H. Mather, and T. P. Ackerman (2007), Analysis of tropical radiative heating profiles: A comparison of models and observations, J. Geophys. Res., 112, D14218, doi:10.1029/2006JD008290.
  • Miles, N. L., J. Verlinde, and E. E. Clothiaux (2000), Cloud droplet size distributions in low-level stratiform clouds, J. Atmos. Sci., 57, 295311.
  • Miller, S. D., and G. L. Stephens (2001), CloudSat instrument requirements as determined from ECMWF forecasts of global cloudiness, J. Geophys. Res., 106, 17,71317,733.
  • Mitchell, D. L., A. Macke, and Y. Liu (1996), Modeling cirrus clouds. Part II: Treatment of radiative properties, J. Atmos. Sci., 53, 29672988.
  • Moore, R. W., and T. H. Vonder Haar (2001), Interannual variability of cloud forcing and meridional energy transport for the Northern Hemisphere winter from 1984–1990, J. Clim., 14, 36433654.
  • Ringer, M. A., and K. P. Shine (1997), Sensitivity of the Earth's radiation budget to interannual variations in cloud amount, Clim. Dyn., 13, 213222.
  • Ritter, B., and J.-F. Geleyn (1992), A comprehensive radiation scheme for numerical weather prediction models with potential applications in climate simulations, Mon. Weather Rev., 120, 303324.
  • Rossow, W. B., and A. A. Lacis (1990), Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects, J. Clim., 3, 12041253.
  • Rossow, W. B., and Y.-C. Zhang (1995), Calculation of surface and top of the atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Validation and first results, J. Geophys. Res., 100, 11671197.
  • Slingo, A., and J. M. Slingo (1988), The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and Initial Experiments, Q. J. R. Meteorol. Soc., 114, 10271062.
  • Slingo, J. M., and A. Slingo (1991), The response of a general circulation model to cloud longwave radiative forcing. II: Further studies, Q. J. R. Meteorol. Soc., 117, 333364.
  • Sohn, B.-J., and E. A. Smith (1992a), Global energy transports and the influence of clouds on transport requirements: A satellite analysis, J. Clim., 5, 717734.
  • Sohn, B.-J., and E. A. Smith (1992b), The modulation of the low-latitude radiation budget by cloud and surface forcing on interannual time scales, J. Clim., 5, 831846.
  • Sohn, B.-J., and E. A. Smith (1992c), The significance of cloud radiative forcing to the general circulation on climate time scales—A satellite interpretation, J. Atmos. Sci., 49, 845860.
  • Stackhouse, P. W.Jr., D. P. Kratz, G. R. McGarragh, S. K. Gupta, and E. B. Greer (2006), Fast longwave and shortwave flux (FLASHFlux) products from CERES and MODIS measurements, paper presented at 12th Conference on Atmospheric Radiation, Am. Meteorol. Soc., Madison, Wis. (Available at http://ams.confex.com/ams/pdfpapers/113479.pdf).
  • Stephens, G. L., and T. J. Greenwald (1991a), The Earth's radiation budget and its relation to atmospheric hydrology. 1. Observations of the clear sky greenhouse effect, J. Geophys. Res., 96, 15,31115,324.
  • Stephens, G. L., and T. J. Greenwald (1991b), The Earth's radiation budget and its relation to atmospheric hydrology: 2. Observations of cloud effects, J. Geophys. Res., 96, 15,32515,340.
  • Stephens, G. L., P. W. Stackhouse Jr., and F. J. Flatau (1990), The relevance of the microphysical and radiative properties of cirrus clouds to climate and climate feedback, J. Atmos. Sci., 47, 17421753.
  • Stephens, G. L., P. M. Gabriel, and P. T. Partain (2001), Parameterization of atmospheric radiative transfer. Part I: Validity of simple models, J. Atmos. Sci., 48, 33913409.
  • Stephens, G. L., et al. (2002), The CloudSat mission and the A-Train: A new dimension of spacebased observations of clouds and precipitation, Bull. Am. Meteorol. Soc., 83, 17711790.
  • Vonder Haar, T. H., and V. E. Suomi (1971), Measurements of the Earth's radiation budget from satellites during a five-year period. Part 1: Extended time and space means, J. Atmos. Sci., 28, 305314.
  • Weaver, C. P. (1999), Interactions among cyclone dynamics, vertical thermodynamic structure, and cloud radiative forcing in the North Atlantic summertime storm track, J. Clim., 12, 26252642.
  • Wielicki, B. A., B. R. Barkstorm, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper (1996), Clouds and the Earth's Radiant Energy System (CERES): An Earth Observing System experiment, Bull. Am. Meteorol. Soc., 77, 853868.
  • Wielicki, B. A., et al. (2001), Evidence for large decadal variability in the tropical mean radiative energy budget, Science, 295, 841844.
  • Wu, D. L., J. H. Jiang, W. G. Read, R. T. Austin, C. P. Davis, A. Lambert, G. L. Stephens, D. G. Vane, and J. W. Waters (2008), Validation of the Aura MLS cloud ice water content measurements, J. Geophys. Res., 113, D15S10, doi:10.1029/2007JD008931.
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis (1995), Calculation of surface and top of the atmosphere radiative fluxes from physical quantities based on ISCCP data sets: 1. Method and sensitivity to input data uncertainties, J. Geophys. Res., 100, 11491165.