SEARCH

SEARCH BY CITATION

References

  • Ando, Y., and M. Hayakawa (2007), Use of generalized cross validation for identification of global lightning distribution by using Schumann resonances, Radio Sci., 42, RS2S16, doi:10.1029/2006RS003481.
  • Ando, Y., M. Hayakawa, A. V. Shvets, and A. P. Nickolaenko (2005), Finite difference analyses of Schumann resonance and reconstruction of lightning distribution, Radio Sci., 40, RS2002, doi:10.1029/2004RS003153.
  • Berenger, J. P. (2002), FDTD computation of VLF-LF propagation in the Earth-ionosphere waveguide, Ann. Telecommun., 57(11–12), 1059.
  • Bilitza, D. (2001), International Reference Ionosphere 2000, Radio Sci., 36(2), 261.
  • Christian, H. J., et al. (2003), Global frequency and distribution of lightning as observed from space by the Optical Transient Detector, J. Geophys. Res., 108(D1), 4005, doi:10.1029/2002JD002347.
  • Cummer, S. A. (2000), Modeling electromagnetic propagation in the Earth-ionosphere waveguide, IEEE Trans. Antennas Propag., 48(9), 1420.
  • Füllekrug, M. (1995), Schumann-resonances in magnetic-field components, J. Atmos. Terr. Phys., 57(5), 479.
  • Greenberg, E., and C. Price (2007), Diurnal variations of ELF transients and background noise in the Schumann resonance band, Radio Sci., 42, RS2S08, doi:10.1029/2006RS003477.
  • Greifinger, P., V. Mushtak, and E. Williams (2005), The lower characteristic ELF altitude of the Earth-ionosphere waveguide: Schumann resonance observations and aeronomical estimates, in VI International Symposium on Electromagnetic Compatibility and Electromagnetic Ecology: The Proceedings, pp. 250254, Inst. of Electr. and Electron. Eng., New York.
  • Greifinger, P. S., V. C. Mushtak, and E. R. Williams (2007), On modeling the lower characteristic ELF altitude from aeronomical data, Radio Sci., 42, RS2S12, doi:10.1029/2006RS003500.
  • Hale, L. C. (1984), Middle atmosphere electrical structure, dynamics, and coupling, Adv. Space Res., 4, 175.
  • Haupt, R. L., and S. E. Haupt (2004), Practical Genetic Algorithms, John Wiley, Hoboken, N. J.
  • Hayakawa, M. (1989), Satellite observation of low-latitude VLF radio noises and their association with thunderstorms, J. Geomagn. Geoelectr., 41, 573.
  • Hayakawa, M., and T. Otsuyama (2002), FDTD analysis of ELF wave propagation in inhomogencous subionospheric waveguide models, Appl. Comput. Electromagn. Soc. J., 17, 239.
  • Hayakawa, M., M. Sekiguchi, and A. P. Nickolaenko (2005), Diurnal variations of electric activity of global thunderstorms deduced from OTD data, J. Atmos. Electr., 25, 55.
  • Hildebrand, F. B. (1956), Introduction to Numerical Analysis, McGraw-Hill, New York.
  • Hu, W., and S. A. Cummer (2006), An FDTD model for low and high altitude lightning-generated EM fields, IEEE Trans. Antennas Propag., 54(5), 1513.
  • Huang, E., E. Williams, R. Boldi, S. Heckman, W. Lyons, M. Taylor, T. Nelson, and C. Wong (1999), Criteria for sprites and elves based on Schumann resonance observation, J. Geophys. Res., 104(D14), 16,943.
  • Kirillov, V. V. (2002), Solving a two-dimensional telegraph equation with anisotropic parameters, Radiophys. Quantum Electron., 45, 929.
  • Kirillov, V. V. (2005), Two-dimensional theory of elf electromagnetic wave propagation in the earth-ionosphere waveguide channel, Radiophys. Quantum Electron., 48, 737.
  • Morente, J. A., G. J. Molina-Cuberos, J. A. Port, B. P. Besser, A. Salinas, K. Schwingenschuch, and H. Lichtenegger (2003), A numerical simulation of Earth's electromagnetic cavity with the Transmission Line Matrix method: Schumann resonances, J. Geophys. Res., 108(A5), 1195, doi:10.1029/2002JA009779.
  • Mushtak, V. C., and E. Williams (2002), ELF propagation parameters for uniform models of the Earth-ionosphere waveguide, J. Atmos. Solar Terr. Phys., 64(18), 1989.
  • Neska, M., and G. Sátori (2006), Schumann resonance observation at Polish Polar Station at Spitsbergen as well as in Central Geophysical Observatory in Belsk, Poland, Przegl. Geofiz., Engl. Transl., no. 3–4, 189.
  • Nickolaenko, A. P., and M. Hayakawa (2002), Resonances in the Earth-Ionosphere Cavity, Kluwer Acad., Norwell, Mass.
  • Nickolaenko, A. P., G. Sátori, V. Ziegler, L. M. Rabinowicz, and I. G. Kudintseva (1998), Parameters of global thunderstorm activity deduced from the long-term Schumann resonance records, J. Atmos. Solar Terr. Phys., 60, 387.
  • Nickolaenko, A. P., M. Hayakawa, and M. Sekiguchi (2006), Variations in global thunderstorm activity inferred from the OTD records, Geophys. Res. Lett., 33, L06823, doi:10.1029/2005GL024884.
  • Ondrášková, A., P. Kostecký, S. Ševčík, and L. Rosenberg (2007), Long-term observations of Schumann resonances at Modra Observatory, Radio Sci., 42, RS2S09, doi:10.1029/2006RS003478.
  • Otsuyama, T., D. Sakuma, and M. Hayakawa (2003), FDTD analysis of ELF wave propagation and Schumann resonances for a subionospheric waveguide model, Radio Sci., 38(6), 1103, doi:10.1029/2002RS002752.
  • Pasko, V. P., U. S. Inan, T. F. Bell, and Y. N. Taranenko (1997), Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere, J. Geophys. Res., 102(A3), 4529.
  • Pasko, V. P., U. S. Inan, T. F. Bell, and S. C. Reising (1998), Mechanism of ELF radiation from sprites, Geophys. Res. Lett., 25(18), 3493.
  • Price, C., and A. Melnikov (2004), Diurnal, seasonal and inter-annual variations of the Schumann resonance parameters, J. Atmos. Solar Terr. Phys., 66, 1179.
  • Sato, M., and H. Fukunishi (2003), Global sprite occurrence locations and rates derived from triangulation of transient Schumann resonance events, Geophys. Res. Lett., 30(16), 1859, doi:10.1029/2003GL017291.
  • Sátori, G., and B. Zieger (1996), Spectral characteristics of Schumann resonances observed in Central Europe, J. Geophys. Res., 101(D23), 29,663.
  • Sátori, G., J. Szendröi, and J. Verö (1996), Monitoring Schumann resonances—I. Methodology, J. Atmos. Terr. Phys., 58(13), 1475.
  • Sátori, G., E. R. Williams, and D. J. Boccippio (2003), On the dynamics of the north-south seasonal migration of global lightning, Eos Trans. AGU, 84(46), Fall Meet. Suppl., Abstract AE32A-0167.
  • Schumann, W. O. (1952), Uber die strahlungslosen einer leitenden Kugel die von einer Luftschicht und einer Ionospharenhulle umgeben ist, Z. Naturforsch. A, 7, 149.
  • Sekiguchi, M., Y. Hobara, and M. Hayakawa (2008), Diurnal and seasonal variations in the Schumann resonance parameters at Moshiri, Japan, J. Atmos. Electr., 28, 1.
  • Sentman, D. D. (1995), Schumann resonances, in Handbook of Atmospheric Electrodynamics, p. 267, CRC Press, London.
  • Sentman, D. D. (1996), Schumann resonance spectra in a two-scale-height Earth-ionosphere cavity, J. Geophys. Res., 101(D5), 9479.
  • Sentman, D. D., and B. J. Fraser (1991), Simultaneous observations of Schumann resonances in California and Australia: Evidence for intensity modulation by the local height of the D-region, J. Geophys. Res., 96(A9), 15,973.
  • Simpson, J. J. (2008), Global FDTD Maxwell's equations modeling of electromagnetic propagation from currents in the lithosphere, IEEE Trans. Antennas Propag., 56(1), 199.
  • Simpson, J. J., and A. Taflove (2004), Three-dimensional FDTD modeling of impulsive ELF propagation about the earth-sphere, IEEE Trans. Antennas Propag., 52(2), 443.
  • Simpson, J. J., and A. Taflove (2007), A review of progress in FDTD Maxwell's equations modeling of impulsive subionospheric propagation below 300 kHz, IEEE Trans. Antennas Propag., 55(6), 1582.
  • Soriano, A., E. A. Navarro, D. L. Paul, J. A. Porti, J. A. Morente, and I. J. Craddock (2005), Finite-difference time domain simulation of the Earth-ionosphere resonant cavity: Schumann resonances, IEEE Trans. Antennas Propag., 53(4), 1535.
  • Taflove, A., and S. C. Hagness (2000), Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Boston, Mass.
  • Williams, E. R. (1992), The Schumann resonance—A global tropical thermometer, Science, 256(5060), 1184.
  • Williams, E. R., and G. Sátori (2004), Lightning, thermodynamic and hydrological comparison of the two tropical continental chimneys, J. Atmos. Solar Terr. Phys., 66, 1213.
  • Yang, H., and V. P. Pasko (2005), Three-dimensional finite-difference time-domain modeling of the Earth-ionosphere cavity resonances, Geophys. Res. Lett., 32, L03114, doi:10.1029/2004GL021343.
  • Yang, H., and V. P. Pasko (2006), Three-dimensional finite-difference time-domain modeling of the diurnal and seasonal variations in Schumann resonance parameters, Radio Sci., 41, RS2S14, doi:10.1029/2005RS003402.
  • Yang, H., and V. P. Pasko (2007), Power variations of Schumann resonances related to El Niño and La Niña phenomena, Geophys. Res. Lett., 34, L11102, doi:10.1029/2007GL030092.
  • Yang, H., V. P. Pasko, and Y. Yair (2006), Three-dimensional finite-difference time-domain modeling of the Schumann resonance parameters on Titan, Venus, and Mars, Radio Sci., 41, RS2S03, doi:10.1029/2005RS003431.
  • Yatsevich, E. I., A. P. Nickolaenko, A. V. Shvets, and L. M. Rabinowicz (2006), Two component source model of Schumann resonance signal, J. Atmos. Electr., 26, 1.
  • Yee, K. S. (1966), Numerical solution of initial boundary value problem involving Maxwell's equations in isotropic media, IEEE Trans. Antennas Propag., 14(3), 802.