SEARCH

SEARCH BY CITATION

References

  • Asner, G. P. (2001), Cloud cover in Landsat observations of the Brazilian Amazon, Int. J. Remote Sens., 22(18), 3855.
  • Asrar, G., R. B. Myneni, and E. T. Kanemasu (1989), Estimation of plant-canopy attributes from spectral reflectance measurements, in Theory and Applications of Optical Remote Sensing, edited by G. Asrar, p. 264, John Wiley, Hoboken, N. J.
  • Blair, J. B., and M. A. Hofton (1999), Modellling laser altimeter return waveforms over complex vegetation using high-resolution elevation data, Geophys. Res. Lett., 26(16), 2509.
  • Blair, J. B., D. L. Rabine, and M. A. Hofton (1999), The Laser Vegetation Imaging Sensor (LVIS): A medium-altitude, digitization-only, airborne laser altimeter for mapping vegetation and topography, ISPRS J. Photogramm. Remote Sens., 54, 115.
  • Blair, J. B., M. A. Hofton, and D. L. Rabine (2004), Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products, version 1.0, report, NASA Goddard Space Flight Cent., Greenbelt, Md. (Available at http://lvis.gsfc.nasa.gov).
  • Blair, J. B., M. A. Hofton, and D. L. Rabine (2006), Processing of NASA LVIS elevation and canopy (LGE, LCE and LGW) data products, version 1.01, report, NASA Goddard Space Flight Cent., Greenbelt, Md. (Available at http://lvis.gsfc.nasa.gov).
  • Bongers, F. (2001), Methods to assess tropical rain forest canopy structure: An overview, Plant Ecol., 153, 263.
  • Bosisio, A. V., and M. Dechambre (2004), Predictions of microwave attenuation through vegetation: A comparison with measurements, Int. J. Remote Sens., 25(19), 3973.
  • Bradbury, R. B., R. A. Hill, D. C. Mason, S. A. Hinsley, J. D. Wilson, H. Baltzer, G. Q. A. Anderson, M. J. Whittingham, I. J. Davenport, and P. E. Bellamy (2005), Modeling relationships between birds and vegetation structure using airborne LiDAR data: A review with case studies from agricultural and woodland environments, Ibis, 147, 443.
  • Camargo, J. L. C., and V. Kapos (1995), Complex edge effects on soil moisture and microclimate in central Amazonian forest, J. Trop. Ecol., 11, 205.
  • Cescatti, A. (1997), Modeling the radiative transfer in discontinuous canopies of asymmetric crowns. I. Model structure and algorithms, Ecol. Modell., 101, 263.
  • Chen, J., S. C. Saunders, T. R. Crow, R. J. Naiman, K. D. Brosofske, G. D. Mroz, B. L. Brookshire, and J. F. Franklin (1999), Microclimate in forest ecosystem and landscape ecology, BioScience, 49(4), 288.
  • Chuah, H. T., and W. L. King (1994), A microwave propagation model for estimation of effective attenuation coefficients in a vegetation canopy, Remote Sens. Environ., 50, 212.
  • Cloude, S. R. (2007), Dual-baseline coherence tomography, IEEE Geosci. Remote Sens. Lett., 4(1), 127.
  • Cloude, S. R., and K. P. Papathanassiou (1998), Polarimetric SAR interferometry, IEEE Trans. Geosci. Remote Sens., 36(5), 1551.
  • Cochrane, M. A. (2003), Fire science for rain forests, Nature, 421, 913.
  • Cochrane, M. A., and M. D. Schulze (2003), Fire as a recurrent event in tropical forests of the eastern Amazon: Effects on forest structure, biomass, and species composition, Biotropica, 31(1), 2.
  • Dobson, M. C., F. T. Ulaby, T. LeToan, A. Beaudoin, E. S. Kasischke, and N. Christensen (1992), Dependence of radar backscatter on coniferous forest biomass, IEEE Trans. Geosci. Remote Sens., 30(2), 412.
  • dos Santos, J. R., C. C. Freitas, L. S. Araujo, L. V. Dutra, J. C. Mura, F. F. Gama, L. S. Soler, and S. J. S. Sant'Anna (2003), Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rain forest, Remote Sens. Environ., 87, 482.
  • Drake, J. B., R. O. Dubayah, D. B. Clark, R. G. Knox, J. B. Blair, M. A. Hofton, R. L. Chazdone, J. F. Weishampel, and S. D. Prince (2002a), Estimation of tropical forest structural characteristics using large-footprint lidar, Remote Sens. Environ., 79, 305.
  • Drake, J. B., R. O. Dubayah, R. G. Knox, D. B. Clark, and J. B. Blair (2002b), Sensitivity of large-footprint lidar to canopy structure and biomass in a neotropical rain forest, Remote Sens. Environ., 81, 378.
  • Garestier, F., P. Dubois-Fernandez, X. Dupuis, and I. Hajnsek (2006), PolInSAR analysis of X-band data over vegetated and urban areas, IEEE Trans. Geosci. Remote Sens., 44(2), 356.
  • Gonçalves, F. G., and J. R. dos Santos (2008), Composição Floristica e estrutura de uma unidade de manejo florestal sustentavel na Floresta Nacional do Tapajós, Para, Acta Amazonica, 38(2), 229.
  • Hajnsek, I., F. Kugler, S.-K. Lee, and K. P. Papathanassiou (2009), Tropical forest parameter estimation by means of Pol-InSAR: The INDREX-II campaign, IEEE Trans. Geosci. Remote Sens., 47(2), 481.
  • Hamilton, W. C. (1964), Statistics in Physical Science, Ronald Press, New York.
  • Harding, D. J., M. A. Lefsky, G. G. Parker, and J. B. Blair (2001), Laser altimeter canopy height profiles methods and validation for closed-canopy, broadleaf, forests, Remote Sens. Environ., 76, 283.
  • Holdridge, L. R. (1947), Determination of world plant formations from simple climatic data, Science, 105, 367.
  • Houghton, R. A. (2005), Aboveground forest biomass and the global carbon balance, Global Change Biol., 11, 945.
  • Imhoff, M. L. (1995), Radar backscatter and biomass saturation: Ramifications for global biomass inventory, IEEE Trans. Geosci. Remote Sens., 33(2), 511.
  • Imhoff, M. L., T. D. Sisk, A. Milne, G. Morgan, and T. Orr (1997), Remotely sensed indicators of habitat heterogeneity: Use of synthetic aperture radar in mapping vegetation structure and bird habitat, Remote Sens. Environ., 60, 217.
  • Ishimaru, A. (1978), Propagation and Scattering in Random Media, vol. 1, Academic Press, San Diego, Calif.
  • Lefsky, M. A., W. B. Cohen, G. G. Parker, and D. J. Harding (2002), Lidar remote sensing for ecosystem studies, BioScience, 52(1), 19.
  • Lefsky, M. A., D. J. Harding, M. Keller, W. B. Cohen, C. C. Carabajal, F. D. B. Espirito-Santo, M. O. Hunter, and R. de Oliveira Jr. (2005), Estimates of forest canopy height and aboveground biomass using ICESat, Geophys. Res. Lett., 32, L22S02, doi:10.1029/2005GL023971.
  • Le Toan, T., S. Quegan, I. Woodward, M. Lomas, N. Delbart, and G. Picard (2004), Relating radar remote sensing of biomass to modeling of forest carbon budgets, Clim. Change, 67, 379.
  • Lucas, R. M., N. Cronin, A. Lee, M. Moghaddam, C. Witte, and P. Tickle (2006), Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia, Remote Sens. Environ., 100, 407.
  • Luckman, A., J. Baker, M. Honzák, and R. Lucas (1998), Tropical forest biomass density estimation using JERS-1 SAR: Seasonal variation, confidence limits, and application to image mosaics, Remote Sens. Environ., 63, 126.
  • MacArthur, R. H., and J. W. MacArthur (1961), On bird species diversity, Ecology, 42(3), 594.
  • McDade, L. A., K. S. Bawa, H. A. Hespenheide, and G. S. Hartshorn (Eds.) (1994), La Selva: Ecology and Natural History of a Neotropical Rain Forest, Univ. of Chicago Press, Chicago, Ill.
  • Moghaddam, M., S. Durden, and H. Zebker (1994), Radar measurement of forested areas during OTTER, Remote Sens. Environ., 47, 154.
  • Mutlu, M., S. C. Popescu, C. Stripling, and T. Spenceer (2008), Mapping surface fuel models using lidar and multispectral data fusion for fire behavior, Remote Sens. Environ., 112, 274.
  • Neeff, T., L. V. Dutra, J. R. dos Santos, C. C. Freitas, and L. S. Araujo (2005), Tropical forest measurement by interferometric height modeling and P-band radar backscatter, For. Sci., 51(6), 585.
  • Nelson, R. (1997), Modeling forest canopy heights: The effects of canopy shape, Remote Sens. Environ., 60, 327.
  • Papathanassiou, K. P., and S. R. Cloude (2001), Single-baseline polarimetric SAR interferometry, IEEE Trans. Geosci. Remote Sens., 39(11), 2532.
  • Ray, D., D. Nepstad, and P. Moutinho (2005), Micrometeorological and canopy controls of fire susceptibility in a forested Amazon landscape, Ecol. Appl., 15, 1664.
  • Reigber, A., and A. Moreira (2000), First demonstration of airborne SAR tomography using multibaseline L-band data, IEEE Trans. Geosci. Remote Sens., 38(5), 2142.
  • Rodriguez, E., and J. M. Martin (1992), Theory and design of interferometric synthetic aperture radars, IEE Proc., Part F, 139(2), 147.
  • Saatchi, S., K. Halligen, D. G. Despain, and R. L. Crabtree (2007), Estimation of forest fuel load from radar remote sensing, IEEE Trans. Geosci. Remote Sens., 46(6), 1726.
  • Sarabandi, K., and Y. C. Lin (2000), Simulation of interferometric SAR characterizing the scattering phase center of forest canopies, IEEE Trans. Geosci. Remote Sens., 38, 115.
  • Saugier, B., J. Roy, and H. A. Mooney (2001), Estimations of global terrestrial productivity: Converging toward a single number?, in Terrestrial Global Productivity, edited by J. Roy, B. Saugier, and H. A. Mooney, p. 543, Academic Press, San Diego, Calif.
  • Schlesinger, W. H. (1991), Biogeochemistry: An Analysis of Global Change, Academic Press, San Diego, Calif.
  • Shukla, J., C. Nobre, and P. Sellers (1990), Amazon deforestation and climate change, Science, 247, 1322.
  • Sinoquet, H., and P. Rivet (1997), Measurement and visualization of the architecture of an adult tree based on a three-dimensional digitizing device, Trees, 11, 265.
  • Skowronski, N., K. Clark, R. Nelson, J. Hom, and M. Patterson (2007), Remotely sensed measurements of forest structure and fuel loads in the pinelands of New Jersey, Remote Sens. Environ., 108, 123.
  • Slatton, K. C., M. M. Crawford, and B. L. Evans (2001), Fusing interferometric radar and laser altimeter data to estimate surface topography and vegetation heights, IEEE Trans. Geosci. Remote Sens., 39(11), 2470.
  • Steinenger, M. K. (2000), Satellite estimation of tropical secondary forest aboveground biomass: Data from Brazil and Bolivia, Int. J. Remote Sens., 21(6), 1139.
  • Strahler, A. H., et al. (2008), Retrieval of forest structural parameters using a ground-based lidar instrument (Echidna©), Can. J. Remote Sens., 34, Suppl. 2, S426.
  • Thompson, A. R., J. M. Moran, and G. W. Swenson (1986), Interferometry and Synthesis in Radio Astronomy, John Wiley, Hoboken, N. J.
  • Treuhaft, R. N., and P. R. Siqueira (2000), Vertical structure of vegetated land surfaces from interferometric and polarimetric radar, Radio Sci., 35(1), 141.
  • Treuhaft, R. N., S. N. Madsen, M. Moghaddam, and J. J. Van Zyl (1996), Vegetation characteristics and surface topography from interferometric radar, Radio Sci., 31, 1449.
  • Treuhaft, R. N., G. P. Asner, and B. E. Law (2002), Forest leaf area density profiles from the quantitative fusion of radar and hyperspectral data, J. Geophys. Res., 107(D21), 4568, doi:10.1029/2001JD000646.
  • Treuhaft, R. N., G. P. Asner, and B. E. Law (2003), Structure-based forest biomass from fusion of radar and hyperspectral observations, Geophys. Res. Lett., 30(9), 1472, doi:10.1029/2002GL016857.
  • Treuhaft, R. N., B. E. Law, and G. P. Asner (2004), Forest attributes from radar interferometric structure and its fusion with optical remote sensing, BioScience, 54(6), 561.
  • Treuhaft, R. N., B. D. Chapman, J. R. dos Santos, F. G. Gonçalves, L. V. Dutra, P. M. L. A. Graça, and J. B. Drake (2009), The ambiguity in forest profiles and extinction estimated from multibaseline interferometric SAR, Bol. Cienc. Geod., 15(3), 299.
  • Turner, W., S. Spector, N. Gardiner, M. Fladeland, E. Sterling, and M. Steininger (2003), Remote sensing for biodiversity science and conservation, Trends Ecol. Evol., 18(6), 306.
  • Van Zyl, J. J., A. Chu, S. Hensley, Y. Lou, and Y. Kim (1997), The AIRSAR/TOPSAR integrated multifrequency polarimetric and interferometric SAR processor, Conf. Publ. 449, p. 100, Inst. of Eletr. Eng., New York.
  • Waring, R. H., and S. W. Running (1989), Forest Ecosystems, Analysis at Multiple Scales, Academic Press, San Diego, Calif.
  • Wiens, J. A. (1989), The Ecology of Bird Communities, vol. 1, Cambridge Univ. Press, Cambridge, U. K.