SEARCH

SEARCH BY CITATION

References

  • Alexiades, V., and A. D. Solomon (1993), Mathemtical Modeling of Melting and Freezing Processes, Hemisphere, Washington, D. C.
  • Aschwanden, A., and H. Blatter (2005), Meltwater production due to strain heating in Storglaciären, Sweden, J. Geophys. Res., 110, F04024, doi:10.1029/2005JF000328.
  • Bitz, C. M., and W. H. Lipscomb (1999), An energy-conserving thermodynamic model of sea ice, J. Geophys. Res., 104(C7), 15,66915,677.
  • Blatter, H. (1987), On the thermal regime of an Arctic valley glacier: A study of the White Glacier, Axel Heiberg Island, N.W.T., Canada, J. Glaciol., 33(114), 200211.
  • Blatter, H. (1995), Velocity and stress fields in grounded glaciers: A simple algorithm for including deviatoric stress gradients, J. Glaciol., 41(138), 333344.
  • Blatter, H., and G. Kappenberger (1988), Mass balance and thermal regime of Laika ice cap, Coburg Island, N.W.T., Canada, J. Glaciol., 34(116), 102110.
  • Braess, D. (2007), Finite Elements: Theory, Fast Solvers, and Applications in Solid Mechanics, 3rd ed., Cambridge Univ. Press, Cambridge, U.K.
  • Breuer, B., M. A. Lange, and N. Blindow (2006), Sensitivity studies on model modifications to assess the dynamics of a temperate ice cap, such as that on King George Island, Antarctica, J. Glaciol., 52(177), 235247.
  • Deuflhard, P. (1974), A modified Newton method for the solution of ill-conditioned systems of nonlinear equations with application to multiple shooting, Numer. Math., 22, 289315.
  • Duval, P. (1977), The role of water content on the creep rate of polycrystalline ice, in Isotopes and Impurities in Snow and Ice, IAHS AISH Publ., 118, 2933.
  • Elliott, C. M. (1987), Error analysis of the enthalpy method for the Stefan problem, IMA J. Numer. Anal., 7, 6171.
  • Fowler, A. C. (1984), On the transport of moisture in polythermal glaciers, Geophys. Astrophys. Fluid Dyn., 28, 99140.
  • Fowler, A. C., and D. Larson (1978), Flow of polythermal glaciers: 1. Model and preliminary analysis, Proc. R. Soc. London, Ser. A, 363, 217242.
  • Glen, J. W. (1955), The creep of polycrystalline ice, Proc. R. Soc. London, Ser. A, 228, 519538.
  • Greve, R. (1995), Thermomechanisches Verhalten polythermer Eisschilde: Theorie, Analytik, Numerik, Ph.D. thesis, Tech. Hochsch. Darmstadt, Darmstadt, Germany.
  • Greve, R. (1997a), A continuum-mechanical formulation for shallow polythermal ice sheets, Philos. Trans. R. Soc. London, Ser. A, 355, 921974.
  • Greve, R. (1997b), Application of a polythermal three-dimensional ice sheet model to the Greenland ice sheet: Response to a steady-state and transient climate scenarios, J. Clim., 10(5), 901918.
  • Haeberli, W. (1976), Eistemperaturen in den Alpen, Z. Gletscherkd. Glazialgeol., 11(2), 203220.
  • Haefeli, R. (1963), Observations in ice tunnels and the flow law of ice, in Ice and Snow: Properties, Processes, and Applications, edited by W. D. Kingery, pp. 162186, MIT Press, Cambridge, Mass.
  • Harrison, W. D. (1972), Temperature of a temperate glacier, J. Glaciol., 11(61), 1529.
  • Holmlund, P., and M. Eriksson (1989), The cold surface layer on Storglaciären, Geogr. Ann., Ser. A, 71(3–4), 241244.
  • Hutter, K. (1982), A mathematical model of polythermal glaciers and ice sheets, Geophys. Astrophys. Fluid Dyn., 21, 201224.
  • Hutter, K., H. Blatter, and M. Funk (1988), A model computation of moisture content in polythermal glaciers, J. Geophys. Res., 93(B10), 12,20512,214.
  • Huwald, H., L.-B. Tremblay, and H. Blatter (2005), A multilayer sigma-coordinate thermodynamic sea ice model: Validation against Surface Heat Budget of the Arctic Ocean (SHEBA)/Sea Ice Model Intercomparison Project Part 2 (SIMIP2) data, J. Geophys. Res., 110, C05010, doi:10.1029/2004JC002328.
  • Jania, J., D. Mochnacki, and B. Gadek (1996), The thermal structure of Hansbreen, a tidewater glacier in southern Spitsbergen, Svalbard, Polar Res., 15(1), 5366.
  • Kamb, B. (1972), Experimental recrystallization of ice under stress, in Flow and Fracture of Rocks, Geophys. Monogr. Ser., vol. 16, edited by H. C. Heard et al., pp. 211241, AGU, Washington, D. C.
  • Maykut, G. A., and N. Untersteiner (1971), Some results from a time-dependent thermodynamic model of sea ice, J. Geophys. Res., 76(6), 15501575.
  • Moran, M. J., and W. N. Shapiro (2000), Fundamentals of Engineering Thermodynamics, 918 pp., John Wiley, New York.
  • Murray, T., G. Stuart, M. Fry, N. Gamble, and M. Crabtree (2000), Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis, J. Glaciol., 46(154), 389398.
  • Nedjar, B. (2002), An enthalpy-based finite element method for nonlinear heat problems involving phase change, Comput. Struct., 80(1), 921.
  • Nye, J. F. (1965), The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section, J. Glaciol., 5(41), 661690.
  • Ono, N. (1967), Specific heat and heat of fusion of sea ice, in Physics of Snow and Ice, vol. 1, edited by H. Oura, pp. 599610, Inst. of Low Temp. Sci., Hokkaido Univ., Sapporo, Japan.
  • Paterson, W. S. B. (1994), The Physics of Glaciers, 3rd ed., 480 pp., Pergamon, New York.
  • Pettersson, R., P. Jansson, and P. Holmlund (2003), Thinning of the cold surface layer on Storglaciären, Sweden, observed by repeated ground penetrating radar surveys, J. Geophys. Res., 108(F1), 6004, doi:10.1029/2003JF000024.
  • Pettersson, R., P. Jansson, and H. Blatter (2004), Spatial variability in water content at the cold-temperate transition surface of the polythermal Storglaciären, Sweden, J. Geophys. Res., 109, F02009, doi:10.1029/2003JF000110.
  • Pettersson, R., P. Jansson, H. Huwald, and H. Blatter (2007), Spatial pattern and stability of the cold surface layer of Storglaciären, Sweden, J. Glaciol., 53(180), 99109.
  • Pham, Q. (1995), Comparison of general-purpose finite-element methods for the Stefan problem, Numer. Heat Transfer, Part B, 27, 417435.
  • Shamsundar, N., and E. Sparrow (1975), Analysis of multidimensional conduction phase chage via the enthalpy model, J. Heat Transfer, 3(97), 333340.
  • Steinemann, S. (1958), Experimentelle Untersuchungen zur Plastizität von Eis, Beitr. Geol. Schweiz, Geotech. Ser. 10, 72 pp., Schweiz. Geotech. Komm., Zurich, Switzerland.
  • Untersteiner, M. (1961), On the mass and heat budget of Arctic sea ice, Arch. Meteorol. Geophys. Bioklimatol., Ser. A, 12, 151182.
  • Vallon, M., J.-R. Petit, and B. Fabre (1976), Study of an ice core to the bedrock in the accumulation zone of an alpine glacier, J. Glaciol., 17(75), 1327.
  • Voller, V., and M. Cross (1981), Accurate solutions of moving boundary problems using the enthalpy method, Int. J. Heat Mass Transfer, 24, 545556.
  • Voller, V. R., M. Cross, and N. C. Markatos (1987), An enthalpy method for convection/diffusion phase change, Int. J. Numer. Methods Eng., 24, 271284.
  • White, R. E. (1982), An enthalpy formulation of the Stefan problem, SIAM J. Numer. Anal., 19(6), 11291157.
  • Zwinger, T., R. Greve, O. Gagliardini, T. Shiraiwa, and M. Lyly (2007), A full Stokes-flow thermo-mechanical model for firn and ice applied to Gorshkov crater glacier, Kamchatka, Ann. Glaciol., 45, 2937.