SEARCH

SEARCH BY CITATION

References

  • Allard, B., and I. Arsenie (1991), Abiotic reduction of mercury by humic substances in aquatic systems—An important process for mercury cycling, Water Air Soil Pollut., 56, 457464.
  • Amyot, M., G. A. Gill, and F. M. M. Morel (1997a), Production and loss of dissolved gaseous mercury in coastal seawater, Environ. Sci. Technol., 31(12), 36063611.
  • Amyot, M., D. Lean, and G. Mierle (1997b), Photochemical formation of volatile mercury in Arctic lakes, Environ. Toxicol. Chem., 16(10), 20542063.
  • Battke, F., D. Ernst, and S. Halbach (2005), Ascorbate promotes emission of mercury vapour from plants, Plant Cell Environ., 28(12), 14871495.
  • Bentivenga, C. S., J. E. Alfano, S. M. Bugel, and K. Czechowicz (2004), Influence of sediment characteristics on heavy metal toxicity in an urban marsh, Urban Habitats, 2(1), 321.
  • Boudala, F. S., I. Folkins, S. Beauchamp, R. Tordon, J. Neima, and B. Johnson (2000), Mercury flux measurements over air and water in Kejimkujik National Park, Nova Scotia, Water Air Soil Pollut., 122(1–2), 183202.
  • Carpi, A., and S. E. Lindberg (1998), Application of a Teflon (TM) dynamic flux chamber for quantifying soil mercury flux: Tests and results over background soil, Atmos. Environ., 32(5), 873882.
  • Charlier, H. A., C. Albertson, C. Thornock, L. Warner, T. Hurst, and R. Ellis (2005), Comparison of the effects of arsenic(V), cadmium(II), and mercury(II) single metal and mixed metal exposure in radish, Raphanus sativus, Fescue grass, Festuca ovina, and duckweed, Lemna minor, Bull. Environ. Contam. Toxicol., 75(3), 474481.
  • Ericksen, J. A., and M. S. Gustin (2004), Foliar exchange of mercury as a function of soil and air mercury concentrations, Sci. Total Environ., 324(1–3), 271279.
  • Fay, L., and M. S. Gustin (2007), Assessing the influence of different atmospheric and soil mercury concentrations on foliar mercury concentrations in a controlled environment, Water Air Soil Pollut., 181, 373384.
  • Ferrara, R., B. Mazzolai, E. Lanzillotta, E. Nucaro, and N. Pirrone (2000), Temporal trends in gaseous mercury evasion from the Mediterranean seawaters, Sci. Total Environ., 259(1–3), 183190.
  • Fitzgerald, W. F., R. P. Mason, and G. M. Vandal (1991), Atmospheric cycling and air-water exchange of mercury over midcontinental Lacustrine regions, Water Air Soil Pollut., 56, 745767.
  • Ganning, B., and F. Wulff (1970), Measurements of community metabolism in some Baltic brackish water rock pools by means of diel oxygen curves, Oikos, 21(2), 292298.
  • Garcia, E., J. Laroulandie, X. Saint-Simon, and M. Amyot (2006), Temporal and spatial distribution and production of dissolved gaseous mercury in the Bay St. Francois wetland, in the St. Lawrence River, Quebec, Canada, Geochim. Cosmochim. Acta, 70(11), 26652678.
  • Gebhard, A., A. G. Chetverikov, V. V. Gerasimenko, and L. N. Tsoglin (1990), Effect of mercury ions on duckweed plants, Sov. Plant Physiol., 37(2), 262267.
  • Gill, G. A., and W. F. Fitzgerald (1987), Picomolar mercury measurements in seawater and other materials using stannous chloride reduction and 2-stage gold amalgamation with gas-phase detection, Mar. Chem., 20(3), 227243.
  • Graydon, J. A., V. L. St. Louis, S. E. Lindberg, H. Hintelman, and D. P. Krabbenhoft (2006), Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber, Environ. Sci. Technol., 40(15), 46804688.
  • Gustin, M. S., J. A. Ericksen, D. E. Schorran, D. W. Johnson, S. E. Lindberg, and J. S. Coleman (2004), Application of controlled mesocosms for understanding mercury air-soil-plant exchange, Environ. Sci. Technol., 38(22), 60446050.
  • Hanson, P. J., S. E. Lindberg, T. A. Tabberer, J. G. Owens, and K. H. Kim (1995), Foliar exchange of mercury-vapor—Evidence for a compensation point, Water Air Soil Pollut., 80(1–4), 373382.
  • Janes, R., J. Eaton, and K. Hardwick (1996), The effects of floating mats of Azolla filiculoides Lam. and Lemna minuta Kunth on the growth of submerged macrophytes, Hydrobiologia, 340(1–3), 2326.
  • Kiviat, E., and K. MacDonald (2002), Hackensack Meadowlands, N.J., Biodiversity: A Review and Synthesis, 97 pp., Hudsonia, Annandale, N. Y.,
  • Knapp, A., and G. Carter (1998), Variability in leaf optical properties among 26 species from a broad range of habitats, Am. J. Bot., 85(7), 940946.
  • Krabbenhoft, D. P., J. P. Hurley, M. L. Olson, and L. B. Cleckner (1998), Diel variability of mercury phase and species distributions in the Florida Everglades, Biogeochemistry, 40(2–3), 311325.
  • Krauss, P., C. Markstadter, and M. Riederer (1997), Attenuation of UV radiation by plant cuticles from woody species, Plant Cell Environ., 20(8), 10791085.
  • Lalonde, J. D., M. Amyot, A. M. L. Kraepiel, and F. M. M. Morel (2001), Photooxidation of Hg(0) in artificial and natural waters, Environ. Sci. Technol., 35(7), 13671372.
  • Landolt, E. (1986), The Family of Lemnaceae—A Monographic Study, vol. 1, Veroffentlichungen des Geobot. Inst. ETH, Zurich, Switzerland.
  • Lee, X., G. Benoit, and X. Z. Hu (2000), Total gaseous mercury concentration and flux over a coastal saltmarsh vegetation in Connecticut, USA, Atmos. Environ., 34(24), 42054213.
  • Leonard, T. L., G. E. Taylor, M. S. Gustin, and G. C. J. Fernandez (1998), Mercury and plants in contaminated soils: 1. Uptake, partitioning, and emission to the atmosphere, Environ. Toxicol. Chem., 17(10), 20632071.
  • Lindberg, S. E., P. J. Hanson, T. P. Meyers, and K. H. Kim (1998), Air/surface exchange of mercury vapor over forests - The need for a reassessment of continental biogenic emissions, Atmos. Environ., 32(5), 895908.
  • Lindberg, S. E., W. J. Dong, and T. Meyers (2002), Transpiration of gaseous elemental mercury through vegetation in a subtropical wetland in Florida, Atmos. Environ., 36(33), 52075219.
  • Lindberg, S. E., W. J. Dong, J. Chanton, R. G. Qualls, and T. Meyers (2005), A mechanism for bimodal emission of gaseous mercury from aquatic macrophytes, Atmos. Environ., 39(7), 12891301.
  • Mason, R. P., and K. A. Sullivan (1998), Mercury and methylmercury transport through an urban watershed, Water Res., 32(2), 321330.
  • Mishra, V. K., A. R. Upadhyay, V. Pathak, and B. D. Tripathi (2008), Phytoremediation of mercury and arsenic from tropical open case coalmine effluent through naturally occurring aquatic macrophytes, Water Air Soil Pollut., 192, 303314.
  • Mo, S. C., D. S. Choi, and J. W. Robinson (1989), Uptake of mercury from aqueous-solution by duckweed—The effects of Ph, copper and humic-acid, J. Environ. Sci. Health, Part A, 24(2), 135146.
  • Morel, F. M. M., A. M. L. Kraepiel, and M. Amyot (1998), The chemical cycle and bioaccumulation of mercury, Annu. Rev. Ecol. Syst., 29, 543566.
  • O'Driscoll, N., S. Beauchamp, S. Siciliano, A. Rencz, and D. Lean (2003), Continuous analysis of dissolved gaseous mercury (DGM) and mercury flux in two freshwater lakes in Kejimkujik Park, Nova Scotia: Evaluating mercury flux models with quantitative data, Environ. Sci. Technol., 37(10), 22262235.
  • Peters, S. C., J. L. Wollenberg, D. P. Morris, and J. A. Porter (2007), Mercury emission to the atmosphere from experimental manipulation of DOC and UVR in mesoscale field chambers in a freshwater lake, Environ. Sci. Technol., 41, 73567382.
  • Poissant, L., M. Pilote, X. Xu, H. Zhang, and C. Beauvais (2004), Atmospheric mercury speciation and deposition in the Bay St. Francois wetlands, J. Geophys. Res., 109, D11301, doi:10.1029/2003JD004364.
  • Poissant, L., M. Pilote, E. Yumvihoze, and D. Lean (2008), Mercury concentrations and foliage/atmosphere fluxes in a maple forest ecosystem in Quebec, Canada, J. Geophys. Res., 113, D10307, doi:10.1029/2007JD009510.
  • Pokorny, J., and E. Rejmankova (1983), Oxygen regime in a fishpond with duckweeds (Lemnaceae) and Ceratophyllum, Aquat. Bot., 17(2), 125137.
  • Sanemasa, I. (1975), The solubility of elemental mercury in water, Bull. Chem. Soc. Jpn., 48, 17951798.
  • Sharp, J. H., Y. Suzuki, and W. L. Munday (1993), A comparison of dissolved organic-carbon in North-Atlantic ocean nearshore waters by high-temperature combustion and wet chemical oxidation, Mar. Chem., 41(1–3), 253259.
  • Siegel, S., B. Siegel, C. Barghigiani, K. Aratani, P. Penny, and D. Penny (1987), A contribution to the environmental biology of mercury accumulation in plants, Water Air Soil Pollut., 33, 6572.
  • Tseng, C. M., C. Lamborg, W. F. Fitzgerald, and D. R. Engstrom (2004), Cycling of dissolved elemental mercury in Arctic Alaskan lakes, Geochim. Cosmochim. Acta, 68(6), 11731184.
  • Vandal, G. M., R. P. Mason, and W. F. Fitzgerald (1991), Cycling of volatile mercury in temperate lakes, Water Air Soil Pollut., 56, 791803.
  • Wang, W. C. (1990), Literature-review on duckweed toxicity testing, Environ. Res., 52(1), 722.
  • Watras, C. J., K. A. Morrison, J. S. Host, and N. S. Bloom (1995), Concentration of mercury species in relationship to other site-specific factors in the surface waters of northern Wisconsin lakes, Limnol. Oceanogr., 40(3), 556565.