SEARCH

SEARCH BY CITATION

References

  • Barford, C. C., J. P. Montoya, M. A. Altabet, and R. Mitchell (1999), Steady-state nitrogen isotope effects on N2 and N2O production in Paracoccus denitrificans, Appl. Environ. Microbiol., 65, 989994.
  • Barton, L., C. D. A. McLay, L. A. Schipper, and C. T. Smith (1999), Annual denitrification rates in agricultural and forest soils: A review, Aust. J. Soil Res., 37, 10731093.
  • Bateman, E. J., and E. M. Baggs (2005), Contributions of nitrification and denitrification to N2O emission from soils at different water-filled pore space, Biol. Fertil. Soils, 41, 379388, doi:10.1007/s00374-005-0858-3.
  • Bol, R., S. Toyoda, S. Yamulki, J. M. B. Hawkins, L. M. Cardenas, and N. Yoshida (2003), Dual isotope and isotopomer ratios of N2O emitted from a temperate grassland soil after fertiliser application, Rapid Commun. Mass Spectrom., 17, 25502556.
  • Bol, R., T. Röckmann, M. Blackwell, and S. Yamulki (2004), Influence of flooding on δ15N, δ18O, 1δ15N and 2δ15N signatures of N2O released from estuarine soils—A laboratory experiment using tidal flooding chambers, Rapid Commun. Mass Spectrom., 18, 15611568.
  • Bollmann, A., and R. Conrad (1997a), Acetylene blockage technique leads to underestimation of denitrification rates in oxic soils due to scavenging of intermediate nitric oxide, Soil Biol. Biochem., 29, 10671077.
  • Bollmann, A., and R. Conrad (1997b), Enhancement by acetylene of the decomposition of nitric oxide in soil, Soil Biol. Biochem., 29(7), 10571066.
  • Böttcher, J., O. Strebel, S. Voerkelius, and H.-L. Schmidt (1990), Using isotope fractionation of nitrate-nitrogen and nitrate-oxygen for evaluation of microbial denitrification in a sandy aquifer, J. Hydrol. Amsterdam, 114, 413424.
  • Brand, W. A. (1995), PreCon: A fully automated interface for the pre-GC concentration of trace gases in air for isotopic analysis, Isot. Environ. Health Stud., 31, 277284.
  • Brenninkmeijer, C. A. M., and T. Röckmann (1999), Mass spectrometry of the intramolecular nitrogen isotope distribution of environmental nitrous oxide using fragment-ion analysis, Rapid Commun. Mass Spectrom., 13, 20282033.
  • Bryan, B. A., G. Shearer, J. L. Skeeters, and D. H. Kohl (1983), Variable expression of the nitrogen isotope effect associated with denitrification of nitrate, J. Biol. Chem., 258, 86138617.
  • Cardenas, L. M., D. Chadwick, D. Scholefield, R. Fychan, C. L. Marley, R. Jones, R. Bol, R. Well, and A. Vallejo (2007), The effect of diet manipulation on nitrous oxide and methane emissions from manure application to incubated grassland soils, Atmos. Environ., 41, 70967107.
  • Casciotti, K. L., D. M. Sigman, M. G. Hastings, J. K. Böhlke, and A. Hilkert (2002), Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method, Anal. Chem., 74, 49054912.
  • Crenshaw, C. L., C. Lauber, R. L. Sinsabaugh, and L. K. Stavely (2008), Fungal control of nitrous oxide production in semiarid grassland, Biogeochemistry, 87, 1727, doi:10.1007/s10533-007-9165-4.
  • Davidson, E. A., S. C. Hart, C. A. Shanks, and M. K. Firestone (1991), Measuring gross nitrogen mineralization, immobilization, and nitrification by 15N isotopic pool dilution in intact soil cores, J. Soil Sci., 42, 335349.
  • Deurer, M., C. von der Heide, J. Böttcher, W. H. M. Duijnisveld, D. Weymann, and R. Well (2008), The dynamics of N2O in the surface groundwater and its transfer into the unsaturated zone: A case study from a sandy aquifer in Germany, Catena, 72, 362373.
  • Elsner, M., L. Zwank, D. Hunkeler, and R. P. Schwarzenbach (2005), A new concept linking observable stable isotope fractionation to transformation pathways of organic pollutants, Environ. Sci. Technol., 39, 68966916.
  • Flessa, H., and F. Beese (1995), Effects of sugar beet residues on soil redox potential and nitrous oxide emission, Soil Sci. Soc. Am. J., 59, 10441051.
  • Groffman, P. M., M. A. Altabet, J. K. Böhlke, K. Butterbach-Bahl, M. B. David, M. K. Firestone, A. E. Giblin, T. M. Kana, L. P. Nielsen, and M. A. Voytek (2006), Methods for measuring denitrification: Diverse approaches to a difficult problem, Ecol. Appl., 16, 20912122.
  • Hallin, S., G. Braker, and L. Philippot (2006), Molecular tools to assess the diversity and density of denitrifying bacteria in their habitats, in Molecular Biology, Biochemistry, Ecology, and Applied Aspects of the Nitrogen Cycle, edited by H. Bothe, S. J. Ferguson, and W. E. Newton, pp. 313330, Elsevier, Amsterdam.
  • Jinuntuya-Nortman, M., R. L. Sutka, P. H. Ostrom, H. Gandhi, and N. C. Ostrom (2008), Isotopologue fractionation during microbial reduction of N2O within soil mesocosms as a function of water-filled pore space, Soil Biol. Biochem., 40, 22732280.
  • Kaiser, J., S. Park, K. A. Boering, C. A. M. Brenninkmeijer, A. Hilkert, and T. Röckmann (2004), Mass spectrometric method for the absolute calibration of the intramolecular nitrogen isotope distribution in nitrous oxide, Anal. Bioanal. Chem., 378, 256269.
  • Kendall, C. (1998), Tracing nitrogen sources and cycles in catchments, in Isotope Tracers in Catchment Hydrology, edited by C. Kendall, and J. J. McDonnell, pp. 519576, Elsevier, Amsterdam.
  • Laughlin, R. J., and R. J. Stevens (2002), Evidence for fungal dominance of denitrification and codenitrification in a grassland soil, Soil Sci. Soc. Am. J., 66, 15401548.
  • Mariotti, A., J. C. Germon, and A. Leclerc (1982), Nitrogen isotope fractionation associated with the NO2 [RIGHTWARDS ARROW] N2O step of denitrification in soils, Can. J. Soil Sci., 62, 227241.
  • McIlvin, M. R., and M. A. Altabet (2005), Chemical conversion of nitrate and nitrite to nitrous oxide for nitrogen and oxygen isotopic analysis in freshwater and seawater, Anal. Chem., 77, 55895595.
  • Nieder, R., G. Schollmeyer, and J. Richter (1989), Denitrification in the rooting zone of cropped soil with regard to methodology and climate, a review, Biol. Fertil. Soils, 8, 219226.
  • Ostrom, N. E., L. O. Hedin, J. C. von Fisher, and G. P. Robertson (2002), Nitrogen transformations and nitrate removal at a soil-stream interface: A stable isotope approach, Ecol. Appl., 12, 10271043.
  • Ostrom, N. E., A. Pitt, R. Sutka, P. H. Ostrom, A. S. Grandy, K. M. Huizinga, and G. P. Robertson (2007), Isotopologue effects during N2O reduction in soils and in pure cultures of denitrifiers, J. Geophys. Res., 112, G02005, doi:10.1029/2006JG000287.
  • Pérez, T. (2005), Factors that control the isotopic composition of N2O from soil emissions, in Stable Isotopes and Biosphere–Atmosphere Interactions: Processes and Biological Controls, edited by L. B. Flanagan, J. R. Ehleringer, and D. E. Pataki, pp. 6984, Elsevier, Burlington, Mass.,
  • Pérez, T., S. E. Trumbore, S. C. Tyler, P. A. Matson, I. Ortiz-Monasterio, T. Rahn, and D. W. Griffith (2001), Identifying the agricultural imprint on the global N2O budget using stable isotopes, J. Geophys. Res., 106, 98699878.
  • Pérez, T., D. Garcia-Montiel, S. E. Trumbore, S. C. Tyler, P. De Camargo, M. Moreira, M. Piccolo, and C. Cerri (2006), Nitrous oxide nitrification and denitrification 15N enrichment factors from Amazon forest soils, Ecol. Appl., 16(6), 21532167.
  • Popp, B. N., et al. (2002), Nitrogen and oxygen isotopomeric constraints on the origins and sea-to-air flux of N2O in the oligotrophic subtropical North Pacific gyre, Global Biogeochem. Cycles, 16(4), 1064, doi:10.1029/2001GB001806.
  • Röckmann, T., J. Kaiser, and C. A. M. Brenninkmeijer (2003), The isotopic fingerprint of the pre-industrial and the anthropogenic N2O source, Atmos. Chem. Phys., 3, 315323.
  • Ruser, R., H. Flessa, R. Russow, G. Schmidt, F. Buegger, and J. C. Munch (2006), Emissions of N2O, N2 and CO2 from soil fertilized with nitrate: Effect of compaction, soil moisture and rewetting, Soil Biol. Biochem., 38, 263274.
  • Ryden, J. C., L. J. Lund, and D. D. Focht (1979), Direct measurement of denitrification loss from soils: I. Laboratory evaluation of acetylene inhibition of nitrous oxide reduction, Soil Sci. Soc. Am. J., 43, 104110.
  • Schmidt, H.-L., R. A. Werner, N. Yoshida, and R. Well (2004), Is the isotopic composition of nitrous oxide an indicator for its origin from nitrification or denitrification? A theoretical approach from referred data and microbiological and enzyme kinetic aspects, Rapid Commun. Mass Spectrom., 18, 20362040.
  • Spott, O., and C. F. Stange (2007), A new mathematical approach for calculating the contribution of anammox, denitrification, and atmosphere to an N2 mixture based on a 15N tracer technique, Rapid Commun. Mass Spectrum., 21, 23982406, doi:10.1002/rcm.3098.
  • Stein, L. Y, and Y. L. Yung (2003), Production, isotopic composition, and atmospheric fate of biologically produced nitrous oxide, Annu. Rev. Earth Planet. Sci., 31, 329356.
  • Stevens, R. J., R. J. Laughlin, L. C. Burns, J. R. M. Arah, and R. C. Hood (1997), Measuring the contributions of nitrification and denitrification to the flux of nitrous oxide from soil, Soil Biol. Biochem., 29, 139151.
  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2003), Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath, Rapid Commun. Mass Spectrom., 17, 738745.
  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom, H. Gandhi, and J. A. Breznak (2004), Nitrogen isotopomer site preference of N2O produced by Nitrosomonas europaea and Methylococcus capsulatus Bath, Erratum, Rapid Commun. Mass Spectrom., 18, 14111412.
  • Sutka, R. L., N. E. Ostrom, P. H. Ostrom, J. A. Breznak, H. Gandhi, A. J. Pittand, and F. Li (2006), Distinguishing nitrous oxide production from nitrification and denitrification on the basis of isotopomer abundances, Appl. Environ. Microbiol., 72, 638644.
  • Sutka, R. L., J. C. Adams, N. E. Ostrom, and P. H. Ostrom (2008), Isotopologue fractionation during N2O production by fungal denitrification, Rapid Commun. Mass Spectrom., 22, 39893996.
  • Toyoda, S., and N. Yoshida (1999), Determination of nitrogen isotopomers of nitrous oxide on a modified isotope ratio mass spectrometer, Anal. Chem., 71, 47114718.
  • Toyoda, S., N. Yoshida, T. Miwa, Y. Matsui, H. Yamagishi, U. Tsunogai, Y. Nojiri, and N. Tsurushima (2002), Production mechanism and global budget of N2O inferred from its isotopomers in the western North Pacific, Geophys. Res. Lett., 29(3), 1037, doi:10.1029/2001GL014311.
  • Toyoda, S., H. Mutobe, H. Yamagishi, N. Yoshida, and Y. Tanji (2005), Fractionation of N2O isotopomers during production by denitrifiers, Soil Biol. Biochem., 37, 15351545.
  • Vieten, B., T. Blunier, A. Neftel, C. Alewell, and F. Conen (2007), Fractionation factors for stable isotopes of N and O during N2O reduction in soil depend on reaction rate constant, Rapid Commun. Mass Spectrom., 21, 846850.
  • Voerkelius, S. (1989), Isotopendiskriminierungen bei der Nitrifikation und Denitrifikation: Grundlagen und Anwendungen der Herkunfts-Zuordnung von Nitrat und Distickstoffmonoxid, Ph.D. thesis, 119 pp., Univ. of Munich, Munich, Germany.
  • Wada, E., and S. Ueda (1996), Carbon, nitrogen, and oxygen isotope ratios of CH4 and N2O on soil ecosystems, in Mass Spectrometry of Soils, edited by T. W. Boutton, and S.-I. Yamasaki, pp. 177204, Marcel Dekker, New York.
  • Wahlen, M., and T. Yoshinari (1985), Oxygen isotope ratios in N2O from different environments, Nature, 313, 780782.
  • Well, R., I. Kurganova, V. Lopes de Gerenyu, and H. Flessa (2006), Isotopomer signatures of soil emitted N2O under different moisture conditions—A microcosm study with arable loess soil, Soil Biol. Biochem., 38, 29232933.
  • Well, R., H. Flessa, X. Lu, X. Ju, and V. Römheld (2008), Isotopologue ratios of N2O emitted from microcosms with NH4+ fertilized arable soils under conditions favoring nitrification, Soil Biol. Biochem., 40, 24162426.
  • Westley, M. B., H. Yamagishi, B. N. Popp, and N. Yoshida (2006), Nitrous oxide cycling in the Black Sea inferred from stable isotope and isotopomer distributions, Deep Sea Res., 53, 1802, doi:10.1016/j.dsr2.2006.03.012.
  • Westley, M. B., B. N. Popp, and T. M. Rust (2007), The calibration of intramolecular nitrogen isotope distribution in nitrous oxide measured by isotope ratio mass spectrometry, Rapid Commun. Mass Spectrom., 21, 391405.
  • Wolf, I., and R. Russow (2000), Different pathways of formation of N2O, N2 and NO in black earth soil, Soil Biol. Biochem., 32, 229239.
  • Yamagishi, H., M. B. Westley, B. N. Popp, S. Toyoda, N. Yoshida, S. Watanabe, K. Koba, and Y. Yamanaka (2007), Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California, J. Geophys. Res., 112, G02015, doi:10.1029/2006JG000227.
  • Yamulki, S., S. Toyoda, N. Yoshida, E. Veldkamp, B. Grant, and R. Bol (2001), Diurnal fluxes and the isotopomer ratios of N2O in a temperate grassland following urine amendment, Rapid Commun. Mass Spectrom., 15, 12631269.
  • Ye, R. W., I. Toro-Suarez, J. M. Tiedje, and B. A. Averill (1991), H218O isotope exchange studies on the mechanism of reduction of nitric oxide and nitrite to nitrous oxide by denitrifying bacteria: Evidence for an electrophilic nitrosyl during reduction of nitric oxide, J. Biol. Chem., 266, 12,84812,851.
  • Yeomans, J. C., and E. G. Beauchamp (1982), Acetylene as a possible substrate in the denitrification process, Can. J. Soil Sci., 62, 137144.
  • Yoshida, N., and S. Toyoda (2000), Constraining the atmospheric N2O budget from intramolecular site preference in N2O isotopomers, Nature, 405, 330334.