SEARCH

SEARCH BY CITATION

References

  • Bagwell, C. E., Y. M. Piceno, A. L. Ashburne-Lucas, and C. R. Lovell (1998), Physiological diversity of the rhizosphere diazotroph assemblages of selected salt marsh grasses, Appl. Environ. Microbiol., 64(11), 42764282.
  • Benoit, J. M., C. C. Gilmour, R. P. Mason, and A. Heyes (1999), Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment porewaters, Environ. Sci. Technol., 33, 951957, doi:10.1021/es9808200.
  • Benoit, J. M., C. C. Gilmour, A. Heyes, R. P. Mason, and C. Miller (2003), Geochemical and biological controls over methylmercury production and degradation in aquatic ecosystems, Am. Chem. Soc. Symp. Ser., 835, 262297.
  • Blaabjerg, V., and K. Finster (1998), Sulphate reduction associated with roots and rhizomes of the marine macrophyte Zostera marina, Aquat. Microb. Ecol., 15, 311314, doi:10.3354/ame015311.
  • Bloom, N. S. (1989), Determination of picogram levels of methyl mercury by aqueous phase ethylation, followed by cryogenic gas chromatography with cold vapour atomic fluorescence detection, J. Fish. Aquat. Sci., 46, 11311138, doi:10.1139/f89-147.
  • Böhm, W. (1979), Methods of studying root systems, in Ecological Studies: Analysis and Synthesis, vol. 33, edited by W. D. Billings et al., pp. 6471, Springer, New York.
  • Borga, P., M. Nilsson, and A. Tunlid (1994), Bacterial communities in peat in relation to botanical composition as revealed by phospholipid fatty acid analysis, Soil Biol. Biochem., 26, 841848, doi:10.1016/0038-0717(94)90300-X.
  • Cheng, S., D. W. Johnson, and S. Fu (2003), Rhizosphere effects on decomposition: Controls of plant species, phenology, and fertilization, Soil Sci. Soc. Am. J., 67, 14181427.
  • Clesceri, L. S., A. E. Greenberg, and A. Eaton (Eds.) (1998), Standard Methods for the Examination of Water and Wastewater, 20th ed., Am. Public Health Admin., Washington, D. C.,
  • Cline, J. D. (1969), Spectrophotometric determination of hydrogen sulfide in natural waters, Limnol. Oceanogr., 14, 454458.
  • Compeau, G., and R. Bartha (1985), Methylation and demethylation of mercury under controlled redox, pH and salinity conditions, Appl. Environ. Microbiol., 28, 12031207.
  • Conaway, C. H., R. P. Mason, and A. R. Flegal (2003), Mercury speciation in the San Francisco Bay estuary, Mar. Chem., 80, 199225, doi:10.1016/S0304-4203(02)00135-4.
  • Dacey, J. W. H., and B. L. Howes (1984), Water uptake by roots controls water table movement and sediment oxidation in short Spartina marsh, Science, 224, 487489, doi:10.1126/science.224.4648.487.
  • DeWild, J., S. D. Olund, M. L. Olson, and M. T. Tate (2004), Methods for the preparation and analysis of solids and suspended solids for methylmercury, Tech. Methods Rep. 5 A-7, U.S. Geol. Surv., Reston, Va.,
  • Dionex Corporation (1992), Installation Instructions and Troubleshooting Guide for the IONPACO'AG4A-SC Guard Column/IONPACO AS4A-SC Analytical Column, Dionex Corp., Sunnyvale, Calif.,
  • Drott, A., L. Lambertsson, E. Bjorn, and U. Skyllberg (2007), Importance of dissolved neutral mercury sulfides for methyl mercury production in contaminated sediments, Environ. Sci. Technol., 41, 22702276, doi:10.1021/es061724z.
  • Drott, A., L. Lambertsson, E. Bjorn, and U. Skyllberg (2008), Do potential methylation rates reflect accumulated methylmercury in contaminated sediments? Environ. Sci. Technol., 42, 153158, doi:10.1021/es0715851.
  • Ehrenfeld, J. G., B. Ravit, and K. Elgersma (2005), Feedback in the plant-soil system, Annu. Rev. Environ. Resour., 30, 75115, doi:10.1146/annurev.energy.30.050504.144212.
  • Fleming, E. J., E. E. Mack, P. G. Green, and D. C. Nelson (2006), Mercury methylation from unexpected sources: Molybdate-inhibited freshwater sediments and an iron reducing bacterium, Appl. Environ. Microbiol., 72, 457464, doi:10.1128/AEM.72.1.457-464.2006.
  • Fossing, H., and B. Jørgensen (1989), Measurement of bacterial sulfate reduction in sediments: Evaluation of a single step chromium reduction method, Biogeochemistry, 8, 205222, doi:10.1007/BF00002889.
  • Garland, J. (1996), Patterns of potential C source utilization by rhizosphere communities, Soil Biol. Biochem., 28, 223230, doi:10.1016/0038-0717(95)00113-1.
  • Gibbs, M. M. (1979), A simple method for the rapid determination of iron in natural waters, Water Res., 13, 295297, doi:10.1016/0043-1354(79)90209-4.
  • Gilmour, C. C., E. A. Henry, and R. Mitchell (1992), Sulfate stimulation of mercury methylation in freshwater sediments, Environ. Sci. Technol., 26, 22812287, doi:10.1021/es00035a029.
  • Gilmour, C. C., G. S. Riedel, M. C. Ederington, J. T. Bell, J. M. Benoit, G. A. Gill, and M. C. Stordal (1998), Methylmercury concentrations and production rates across a trophic gradient in the northern Everglades, Biogeochemistry, 40, 327345, doi:10.1023/A:1005972708616.
  • Hall, B. D., G. R. Aiken, D. P. Krabbenhoft, M. Marvin-DiPasquale, and C. M. Swarzenski (2008), Wetlands as principal zones of methylmercury production in southern Louisiana and the Gulf of Mexico region, Environ. Pollut., 154, 124134, doi:10.1016/j.envpol.2007.12.017.
  • Hines, M. E., S. L. Knollmeyer, and J. B. Tugel (1989), Sulfate reduction and other sedimentary biogeochemistry in a northern New England salt marsh, Limnol. Oceanogr., 34, 578590.
  • Hines, M. E., G. T. Banta, A. E. Giblin, J. E. Hobbie, and J. B. Tugel (1994), Acetate concentrations and oxidation in salt-marsh sediments, Limnol. Oceanogr., 39, 140148.
  • Howes, B. L., R. W. Howarth, J. M. Teal, and I. Valiela (1981), Oxidation-reduction potentials in a salt marsh: Spatial patterns and interactions with primary production, Limnol. Oceanogr., 26, 350360.
  • Insightful Corporation (2001), S-Plus 7.0 Professional Developer, Service Pack, Insightful Corporation, Seattle, Wash.,
  • Jacob, D. L., and M. L. Otte (2003), Conflicting processes in the wetland plant rhizosphere: Metal retention or mobilization? Water Air Soil Pollut., 3, 91104.
  • Jones, D. L. (1998), Organic acids in the rhizosphere: A critical review, Plant Soil, 205, 2544, doi:10.1023/A:1004356007312.
  • Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates, and R. P. Mason (2006), Mercury methylation by dissimilatory iron-reducing bacteria, Appl. Environ. Microbiol., 72, 79197921, doi:10.1128/AEM.01602-06.
  • Korthals, E. T., and M. R. Winfrey (1987), Seasonal and spatial variations in mercury methylation and demethylation in an oligotrophic lake, Appl. Environ. Microbiol., 53, 23972404.
  • Kostka, J. E., and G. W. Luther (1995), Seasonal cycling of Fe in saltmarsh sediments, Biogeochemistry, 29, 159181, doi:10.1007/BF00000230.
  • Lacerda, L. D., and W. F. Fitzgerald (2001), Biogeochemistry of mercury in wetlands, Wetlands Ecol. Manage., 9, 291293, doi:10.1023/A:1011851432573.
  • Lambertsson, L., and M. Nilsson (2006), Organic material: The primary control on mercury methylation and ambient methylmercury concentrations in estuarine sediments, Environ. Sci. Technol., 38, 14871495.
  • Langer, C. S., W. F. Fitzgerald, P. T. Visscher, and G. M. Vandal (2001), Biogeochemical cycling of methylmercury at Barn Island salt marsh, Stonington, CT USA, Wetlands Ecol. Manage., 9, 295310, doi:10.1023/A:1011816819369.
  • Lee, R., D. W. Kraus, and J. E. Doeller (1999), Oxidation of sulfide by Spartina alterniflora roots, Limnol. Oceanogr., 44, 11551159.
  • Lovely, D. R., and E. J. Phillips (1986), Organic matter mineralization with reduction of ferric iron in anaerobic sediments, Appl. Environ. Microbiol., 51, 683689.
  • Lovely, D. R., and E. J. Phillips (1987), Rapid assay for microbially reducible ferric iron in aquatic sediments, Appl. Environ. Microbiol., 53, 15361540.
  • Marins, R. V., L. D. Lacerda, G. O. Goncalves, and E. C. de Paiva (1997), Effect of root metabolism on the post-depositional mobilization of mercury in salt marsh soils, Bull. Environ. Contam. Toxicol., 58, 733738, doi:10.1007/s001289900394.
  • Marschner, H. (1986), The Mineral Nutrition of Higher Plants, Academic, London.
  • Marvin-DiPasquale, M., and J. L. Agee (2003), Microbial mercury cycling in sediments of the San Francisco Bay-Delta, Estuaries, 26, 15171528, doi:10.1007/BF02803660.
  • Marvin-DiPasquale, M., and M. H. Cox (2007), Legacy Mercury in Alviso Slough, south San Francisco Bay, California: Concentration, speciation and mobility, Open File Rep. 2007-1240, p. 98, U.S. Geol. Surv., Reston, Va.,
  • Marvin-DiPasquale, M., J. L. Agee, R. Bouse, and B. Jaffe (2003), Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California, Environ. Geol., 43, 260267.
  • Marvin-DiPasquale, M., B. D. Hall, J. R. Flanders, N. Ladizinski, J. L. Agee, L. H. Kieu, and L. Windham-Myers (2006), Ecosystem investigations of benthic methylmercury production: A tin-reduction approach for assessing the inorganic mercury pool available for methylation, in Mercury 2006 Abstracts Book: Eighth International Conference on Mercury as a Global Pollutant, Madison, Wis.,
  • McKee, K. L., and W. H. Patrick (1988), The relationship of smooth cordgrass (Spartina alterniflora) to tidal datums: A review, Estuaries Coasts, 11, 143151, doi:10.2307/1351966.
  • Mehrotra, A. S., and D. L. Sedlak (2005), Decrease in net mercury methylation rates following iron amendment to anoxic wetland sediment slurries, Environ. Sci. Technol., 39, 25642570, doi:10.1021/es049096d.
  • Mueller-Harvey, I., and R. J. Parkes (1987), Measurement of volatile fatty acids in pore water from marine sediments by HPLC, Estuarine Coastal Shelf Sci., 25, 567579, doi:10.1016/0272-7714(87)90115-6.
  • Olund, S., J. F. DeWild, M. L. Olson, and M. T. Tate (2004), Methods for the preparation and analysis of solids and suspended solids for total mercury, in Laboratory Analysis, Section A, Water Analysis, Book 5, Chap. 8, 15 pp., U. S. Geol. Surv., Reston, Va.,
  • Parsons, T. R., Y. Maita, and C. M. Lalli (1984), A Manual of Chemical and Biological Methods for Seawater Analysis, Pergamon, Oxford, U. K.,
  • Qian, J., and K. Mopper (1996), Automated high-performance, high-temperature combustion total organic carbon analyzer, Anal. Chem., 68, 30903097, doi:10.1021/ac960370z.
  • Roden, E. E. (2008), Microbiological controls on geochemical kinetics 1: Fundamentals and case study on microbial Fe (III) reduction, in Kinetics of Water-Rock Interactions, edited by S. L. Brantley, J. Kubicki, and A. F. White, pp. 335415, Springer, New York.
  • Roden, E. E., and J. H. Tuttle (1993), Inorganic sulfur cycling in mid and lower Chesapeake Bay sediments, Mar. Ecol. Prog. Ser., 93, 101118, doi:10.3354/meps093101.
  • Roden, E. E., and R. G. Wetzel (1996), Kinetics of microbial Fe (III) oxide reduction in freshwater wetland sediments, Limnol. Oceanogr., 47, 198211.
  • Roden, E. E., and J. M. Zachara (1996), Microbial reduction of crystalline iron (III) oxides: Influence of oxide surface area and potential for cell growth, Environ. Sci. Technol., 30, 16181628, doi:10.1021/es9506216.
  • Selvendiran, P., C. T. Driscoll, J. T. Bushey, and M. R. Montesdeoca (2008), Wetland influence on mercury fate and transport in a temperate forested watershed, Environ. Pollut., 154, 4655, doi:10.1016/j.envpol.2007.12.005.
  • Sobolev, D., and E. E. Roden (2001), Suboxic deposition of ferric iron by bacteria in opposing gradients of Fe (II) and oxygen at circumneutral pH, Appl. Environ. Microbiol., 67, 13281334, doi:10.1128/AEM.67.3.1328-1334.2001.
  • St. Louis, V. L., J. W. M. Rudd, C. A. Kelly, K. G. Beaty, N. S. Bloom, and R. J. Flett (1994), Importance of wetlands as sources of methyl mercury to boreal forest ecosystems, Can. J. Fish. Aquat. Sci., 51, 10651076, doi:10.1139/f94-106.
  • Ullrich, S. M., T. W. Tanton, and S. A. Abdrashitova (2001), Mercury in the aquatic environment: A review of factors affecting methylation, Crit. Rev. Environ. Sci. Technol., 31, 241293, doi:10.1080/20016491089226.
  • U.S. Environmental Protection Agency (2002), Methyl mercury in water by distillation, aqueous ethylation, purge and trap, and cold vapor atomic flouresence spectrometry, EPA 821-R-01-020, Washington, D. C.,
  • Warner, K. A., E. E. Roden, and J. C. Bonzongo (2003), Microbial mercury transformations in anoxic freshwater sediments under iron-reducing and other electron accepting conditions, Environ. Sci. Technol., 37, 21592165, doi:10.1021/es0262939.
  • Westover, K. M., A. C. Kennedy, and S. E. Kelley (1997), Patterns of rhizosphere microbial community structure associated with co-occurring plant species, J. Ecol., 85, 863873, doi:10.2307/2960607.
  • Windham, L., and J. G. Ehrenfeld (2003), Net impact of a plant invasion on nitrogen cycling processes within a brackish tidal marsh, Ecol. Appl., 13, 883897, doi:10.1890/02-5005.
  • Yee, D., et al. (2007), Mercury and methylmercury processes in north San Francisco Bay tidal wetland ecosystems, Final Rep. CalFed ERP02D-P62, 33 pp., San Francisco Estuary Inst., Oakland, Calif.
  • Zillioux, E. J., D. B. Porcella, and J. M. Benoit (1993), Mercury cycling and effects in freshwater wetland ecosystems, Environ. Toxicol. Chem., 12, 22452264, doi:10.1897/1552-8618(1993)12[2245:MCAEIF]2.0.CO;2.