SEARCH

SEARCH BY CITATION

References

  • Anderson, J., et al. (2006), The use of waveform lidar to measure northern temperate mixed conifer and deciduous forest structure in New Hampshire, Remote Sens. Environ., 105(3), 248261.
  • Avery, T. E., and H. E. Burkhart (2002), Forest Measurements, 5th ed., McGraw-Hill, Boston, Mass.,
  • Bauer, M. E., et al. (1994), Satellite inventory of Minnesota forest resources, Photogramm. Eng. Remote Sens., 60(3), 287298.
  • Bergen, K. M., et al. (2007), Multi-dimensional vegetation structure in modeling avian habitat, Ecol. Inform., 2(1), 922.
  • Brandtberg, T., et al. (2003), Detection and analysis of individual leaf-off tree crowns in small footprint, high sampling density lidar data from the eastern deciduous forest in North America, Remote Sens. Environ., 85(3), 290303.
  • Carlotto, M. J. (1998), Spectral shape classification of landsat thematic mapper imagery, Photogramm. Eng. Remote Sens., 64(9), 905913.
  • Chatterjee, S., et al. (2000), Regression Analysis by Example, 3rd ed., John Wiley, New York.
  • Cohen, W. B., and T. A. Spies (1992), Estimating structural attributes of douglas-fir western hemlock forest stands from Landsat and SPOT imagery, Remote Sens. Environ., 41(1), 117.
  • Cramer, W., et al. (2001), Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models, Global Change Biol., 7(4), 357373.
  • Curtis, J. T. (1959), The Vegetation of Wisconsin, Univ. of Wis. Press, Madison.
  • Donnellan, A., et al. (2008), Deformation, ecosystem structure, and dynamics of ice (DESDynI), in Proceedings of IEEE Aerospace Conference, IEEE Press, Piscataway, N. J.,
  • Drake, J. B., et al. (2002), Estimation of tropical forest structural characteristics, using large-footprint lidar, Remote Sens. Environ., 79(2–3), 305319.
  • Fassnacht, K. S., et al. (1997), Estimating the leaf area index of North Central Wisconsin forests using the Landsat Thematic Mapper, Remote Sens. Environ., 61(2), 229245.
  • Flader, S. L. (1983), The Great Lakes Forest: An Environmental and Social History, Univ. of Minn. Press, Minneapolis.
  • Gelman, A., and J. Hill (2007), Data Analysis Using Regression and Multilevel/Hierarchical Models, Cambridge Univ. Press, Cambridge, U. K.,
  • Gobakken, T., and E. Næsset (2008), Assessing effects of laser point density, ground sampling intensity, and field sample plot size on biophysical stand properties derived from airborne laser scanner data, Can. J. For. Res., 38, 10951109.
  • Goetz, S., et al. (2007), Laser remote sensing of canopy habitat heterogeneity as a predictor of bird species richness in an eastern temperate forest, USA, Remote Sens. Environ., 108(3), 254263.
  • Gough, R. J. (1997), Farming the Cutover: A Social History of Northern Wisconsin, 1900–1940, Univ. Press of Kansas, Lawrence.
  • Gower, S. T., et al. (1999), Direct and indirect estimation of leaf area index, f(APAR), and net primary production of terrestrial ecosystems, Remote Sens. Environ., 70(1), 2951.
  • Harding, D. J., and C. C. Carabajal (2005), ICESat waveform measurements of within-footprint topographic relief and vegetation vertical structure, Geophys. Res. Lett., 32, L21S10, doi:10.1029/2005GL023471.
  • Hopkinson, C., et al. (2006), Towards a universal lidar canopy height indicator, Can. J. Rem. Sens., 32(2), 139152.
  • Hyde, P., et al. (2006), Mapping forest structure for wildlife habitat analysis using multi-sensor (LiDAR, SAR/InSAR, ETM plus, Quickbird) synergy, Remote Sens. Environ., 102(1–2), 6373.
  • Hyyppä, J., et al. (2001), A segmentation-based method to retrieve stem volume estimates from 3-D tree height models produced by laser scanners, IEEE Trans. Geosci. Remote Sens., 39(5), 969975.
  • Jakubauskas, M. E., and K. P. Price (1997), Empirical relationships between structural and spectral factors of Yellowstone lodgepole pine forests, Photogramm. Eng. Remote Sens., 63(12), 13751381.
  • Jenkins, J. C., et al. (2003), National-scale biomass estimators for United States tree species, For. Sci., 49(1), 1235.
  • Leckie, D., et al. (2003), Combined high-density lidar and multispectral imagery for individual tree crown analysis, Can. J. Rem. Sens., 29(5), 633649.
  • Lefsky, M. A., et al. (2002), Lidar remote sensing for ecosystem studies, BioScience, 52(1), 1930.
  • Lefsky, M. A., et al. (2005a), Estimates of forest canopy height and aboveground biomass using ICESat, Geophys. Res. Lett., 32, L22S02, doi:10.1029/2005GL023971.
  • Lefsky, M. A., et al. (2005b), Geographic variability in lidar predictions of forest stand structure in the Pacific Northwest, Remote Sens. Environ., 95(4), 532548.
  • Lim, K., et al. (2003), Lidar remote sensing of biophysical properties of tolerant northern hardwood forests, Can. J. Rem. Sens., 29(5), 658678.
  • MacArthur, R. H., and J. W. MacArthur (1969), On bird species diversity, Ecology, 42, 594598.
  • Maclean, G. A., and W. B. Krabill (1986), Gross-merchantable timber volume estimation using an airborne lidar system, Can. J. Rem. Sens., 12(1), 718.
  • Magnusson, M., et al. (2007), Effects on estimation accuracy of forest variables using different pulse density of laser data, For. Sci., 53(6), 619626.
  • Martin, L. (1965), The Physical Geography of Wisconsin, Univ. of Wis. Press, Madison.
  • McRoberts, R. E., et al. (2002), Stratified estimation of forest area using satellite imagery, inventory data, and the k-Nearest Neighbors technique, Remote Sens. Environ., 82(2–3), 457468.
  • Næsset, E. (1997a), Estimating timber volume of forest stands using airborne laser scanner data, Remote Sens. Environ., 61(2), 246253.
  • Næsset, E. (1997b), Determination of mean tree height of forest stands using airborne laser scanner data, ISPRS J. Photogramm. Remote Sens., 52(2), 4956.
  • Næsset, E. (2002), Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data, Remote Sens. Environ., 80(1), 8899.
  • Næsset, E. (2004), Practical large-scale forest stand inventory using a small-footprint airborne scanning laser, Scand. J. For. Res., 19(2), 164179.
  • Næsset, E., et al. (2004), Laser scanning of forest resources: The Nordic experience, Scand. J. For. Res., 19(6), 482499.
  • Nelson, R., et al. (1984), Determining forest canopy characteristics using airborne laser data, Remote Sens. Environ., 15(3), 201212.
  • Nelson, R., et al. (1988), Estimating forest biomass and volume using airborne laser data, Remote Sens. Environ., 24(2), 247267.
  • Nilsson, M. (1996), Estimation of tree weights and stand volume using an airborne lidar system, Remote Sens. Environ., 56(1), 17.
  • Pinherio, J. C., and D. M. Bates (2002), Mixed-Effects Models in S and S-PLUS, Springer, New York.
  • Potapov, P., et al. (2008), Combining MODIS and Landsat imagery to estimate and map boreal forest cover loss, Remote Sens. Environ., 112(9), 37083719.
  • Schulte, L. A., et al. (2007), Homogenization of northern U. S. Great Lakes forests due to land use, Landscape Ecol., 22, 10891103.
  • Thompson, S. K. (2002), Sampling, 2nd ed., John Wiley, New York.
  • U.S. Geological Survey (2008), Imagery for everyone, technical announcement, Reston, Va.,
  • van Aardt, J. A. N., et al. (2006), Forest volume and biomass estimation using small-footprint lidar-distributional parameters on a per-segment basis, For. Sci., 52(6), 636649.
  • Vierling, K. T., et al. (2008), Lidar: Shedding new light on habitat characterization and modeling, Front. Ecol. Environ., 6(2), 9098.
  • Westfall, J. A. (2008), Differences in computed individual-tree volumes caused by differences in field measurements, North. J. Appl. For., 25(4), 195201.
  • Wisconsin Department of Natural Resources (1998), Wisconsin land cover grid, Madison.
  • Wisconsin Department of Natural Resources (2008), WI DNR GIS data holdings, Madison. (Available at ftp://dnrftp01.wi.gov/geodata/).
  • Wolter, P. T., et al. (1995), Improved forest classification in the northern Lake-States using multitemporal Landsat imagery, Photogramm. Eng. Remote Sens., 61(9), 11291143.
  • Zheng, D. L., et al. (2004), Estimating aboveground biomass using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA, Remote Sens. Environ., 93(3), 402411.