SEARCH

SEARCH BY CITATION

References

  • Algeo, T. J. (2004), Can marine anoxic events draw down the trace element inventory of seawater? Geology, 32, 10571060, doi:10.1130/G20896.1.
  • Algeo, T. J., and T. W. Lyons (2006), Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions, Paleoceanography, 21, PA1016, doi:10.1029/2004PA001112.
  • Bailey, T. R., Y. Rosenthal, J. M. McArthur, B. van de Schootbrugge, and M. F. Thirlwall (2003), Paleoceanographic changes of the late Pliensbachian–Early Toarcian interval: A possible link to the genesis of an oceanic anoxic event, Earth Planet. Sci. Lett., 212, 307320, doi:10.1016/S0012-821X(03)00278-4.
  • Barling, J., G. L. Arnold, and A. D. Anbar (2001), Natural mass-dependent variations in the isotopic composition of molybdenum, Earth Planet. Sci. Lett., 193, 447457, doi:10.1016/S0012-821X(01)00514-3.
  • Brinkhuis, H., et al. (2006), Episodic fresh surface waters in the Eocene Arctic Ocean, Nature, 441, 606609, doi:10.1038/nature04692.
  • Brumsack, H.-J. (1988), Rezente, Corg-Reiche Sedimente als Schlüssel zum Verständnis fossiler Schwarzschiefer, 126 pp., Ph.D. thesis, Univ. Gottingen, Gottingen, Germany.
  • Cohen, A. S., A. L. Coe, J. M. Bartlett, and C. J. Hawkesworth (1999), Precise Re-Os ages of organic-rich mudrocks and the Os isotope composition of Jurassic seawater, Earth Planet. Sci. Lett., 167, 159173, doi:10.1016/S0012-821X(99)00026-6.
  • Cohen, A. S., A. L. Coe, S. M. Harding, and L. Schwark (2004), Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering, Geology, 32, 157160, doi:10.1130/G20158.1.
  • Collier, R. W. (1985), Molybdenum in the northeast Pacific Ocean, Limnol. Oceanogr., 30, 13511353.
  • Colodner, D., J. Edmond, and E. Boyle (1995), Rhenium in the Black Sea: Comparison with molybdenum and uranium, Earth Planet. Sci. Lett., 131, 115, doi:10.1016/0012-821X(95)00010-A.
  • Ehlin, U. (1981), Hydrology of the Baltic Sea, in The Baltic Sea, Elsevier Oceanogr. Ser., vol. 30, pp. 123134, edited by A. V. Voipio, Elsevier, Amsterdam.
  • Emerson, S. R., and S. S. Huested (1991), Ocean anoxia and the concentrations of molybdenum and vanadium in seawater, Mar. Chem., 34, 177196, doi:10.1016/0304-4203(91)90002-E.
  • Erickson, B. E., and G. R. Helz (2000), Molybdenum (VI) speciation in sulfidic waters: Stability and lability of thiomolybdates, Geochim. Cosmochim. Acta, 64, 11491158, doi:10.1016/S0016-7037(99)00423-8.
  • Feist-Burkhardt, S. (1992), Palynological investigations in the Lower and Middle Jurassic of Switzerland, France and Germany: Palynofacies and type of organic matter, dinoflagellate cyst morphology and stratigraphy, Ph.D. thesis, Univ. of Geneva, Geneva, Switzerland.
  • Frimmel, A., W. Oschmann, and L. Schwark (2004), Chemostratigraphy of the Posidonia black shale, SW Germany I. Influence of sea-level variation on organic facies evolution, Chem. Geol., 206, 199230, doi:10.1016/j.chemgeo.2003.12.007.
  • Neuendorf, K. K. E.J. P. Mehl Jr., and J. A. Jackson (Eds.) (2005), Glossary of Geology, 5th ed., Am. Geol. Inst., Alexandria, Va.
  • Hallam, A. (1997), Estimates of the amount and rate of sea-level change across the Rhaetian-Hettangian and Pliensbachian-Toarcian boundaries (latest Triassic to Early Jurassic), J. Geol. Soc., 154, 773779, doi:10.1144/gsjgs.154.5.0773.
  • Hallam, A., and M. J. Bradshaw (1979), Bituminous shales and oolitic ironstones as indicators of transgressions and regressions, J. Geol. Soc., 136, 157164, doi:10.1144/gsjgs.136.2.0157.
  • Harries, P. J., and C. T. S. Little (1999), The Early Toarcian (Early Jurassic) and the Cenomanian-Turonian (Late Cretaceous) mass extinctions: Similarities and contrasts, Palaeogeogr. Palaeoclimatol. Palaeoecol., 154, 3966, doi:10.1016/S0031-0182(99)00086-3.
  • Hay, W. W. (1995), Paleoceanography of marine organic-carbon-rich sediments, in Paleogeography, Paleoclimate, and Source Rocks, edited by A.-Y. Huc, AAPG Stud. Geol., 40, 2159.
  • Helz, G. R., C. V. Miller, J. M. Charnock, J. F. M. Mosselmans, R. A. D. Pattrick, C. D. Gardner, and D. J. Vaughan (1996), Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence, Geochim. Cosmochim. Acta, 60, 36313642, doi:10.1016/0016-7037(96)00195-0.
  • Hem, J. D. (1978), Study and interpretation of the chemical characteristics of natural water, U. S. Geol. Surv. Water Supply Pap., 2254, 140 pp.
  • Howard, A. S. (1985), Lithostratigraphy of the Staithes sandstone and Cleveland ironstone formations (Lower Jurassic) of north-east Yorkshire, Proc. Yorkshire Geol. Soc., 45, 261275.
  • Howarth, M. K. (1955), Domerian of the Yorkshire coast, Proc. Yorkshire Geol. Soc., 30, 147175.
  • Howarth, M. K. (1962), The jet rock series and the alum shale series of the Yorkshire coast, Proc. Yorkshire Geol. Soc., 33, 381422.
  • Howarth, M. K. (1973), The stratigraphy and ammonite fauna of the upper Liassic grey shales of the Yorkshire coast, Bull. Br. Mus. Nat. Hist. Geol., 24, 235277.
  • Jenkyns, H. C. (1988), The Early Toarcian (Jurassic) anoxic event: Stratigraphic, sedimentary and geochemical evidence, Am. J. Sci., 288, 101151.
  • Jochum, J. (1993), Karbonatumverteilung, Mobilisation von Elementen und Migration von Erdöl-Kohlenwasserstoffen im Posidonienschiefer (Hildmulde, NW-Deutschland) in Abhängigkeit von der Paläotemperaturbeanspruchung durch das Massiv von Vlotho, Ber. Forsch. Juelich D82, 236 pp., Forsch. Juelich, Juelich, Germany.
  • Jones, G. A., and A. R. Gagnon (1994), Radiocarbon chronology of Black Sea sediments, Deep Sea Res., Part A, 41, 531557.
  • Kearey, P. (2001), The New Penguin Dictionary of Geology, Penguin, London.
  • Küspert, W. (1982), Environmental changes during oil shale deposition as deduced from stable isotope ratios, in Cyclic and Event Stratification, edited by G. Einsele, and A. Seilacher, pp. 482501, Springer, Berlin.
  • Littke, R., D. R. Baker, D. Leythauser, and J. Rullkötter (1991), Keys to the depositional history of the Posidonia shale (Toarcian) in the Hils syncline, northern Germany, in Modern and Ancient Continental Shelf Anoxia, edited by R. V. Tyson, and T. H. Pearson, Geol. Soc. Spec. Publ., 58, 311333.
  • Little, C. T. S. (1996), The Pliensbachian-Toarcian (Lower Jurassic) extinction event, in The Cretaceous-Tertiary Event and Other Catastrophes in Earth History, edited by G. Ryder, D. Fastovsky, and S. Gartner, Geol. Soc. Am. Spec. Pap., 307, 505512.
  • Little, C. T. S., and M. J. Benton (1995), Early Jurassic mass extinction: A global long-term event, Geology, 23, 495498, doi:10.1130/0091-7613(1995)023<0495:EJMEAG>2.3.CO;2.
  • Loh, H., B. Maul, M. Prauss, and W. Riegel (1986), Primary production, maceral formation and carbonate species in the Posidonia shale of NW Germany, in Biogeochemistry of Black Shales, Mitt. Geol. Palaeontol. Inst. Univ. Hamburg, vol. 60, edited by E. T. Degens, P. A. Meyers, and S. C. Brassell, pp. 397421, Geol. Palaeontol. Inst., Univ. Hamburg, Hamburg, Germany.
  • McArthur, J. M., and P. Wignall (2007), Comment on “Non-uniqueness and interpretation of the seawater 87Sr/86Sr curve” by Dave Waltham and Darren R. Gröcke (GCA, 70, 2006, 384–394), Geochim. Cosmochim. Acta, 71, 33823386, doi:10.1016/j.gca.2006.10.026.
  • McArthur, J. M., D. T. Donovan, M. F. Thirlwall, B. W. Fouke, and D. Mattey (2000), Strontium isotope profile of the Early Toarcian (Jurassic) oceanic anoxic event, the duration of ammonite biozones, and belemnite palaeotemperatures, Earth Planet. Sci. Lett., 179, 269285, doi:10.1016/S0012-821X(00)00111-4.
  • McArthur, J. M., N. M. M. Janssen, S. Reboulet, M. J. Leng, M. F. Thirlwall, and B. van de Schootbrugge (2007), Early Cretaceous ice-cap volume, palaeo-temperatures (Mg, δ18O), and isotope stratigraphy (δ13C, 87Sr/86Sr) from Tethyan belemnites, Palaeogeogr. Palaeoclimatol. Palaeoecol., 248, 391430, doi:10.1016/j.palaeo.2006.12.015.
  • Morford, J. L., and S. Emerson (1999), The geochemistry of redox sensitive trace metals in sediments, Geochim. Cosmochim. Acta, 63, 17351750, doi:10.1016/S0016-7037(99)00126-X.
  • Nägler, T. F., C. Siebert, H. Lüschen, and M. E. Böttcher (2005), Sedimentary Mo isotope record across the Holocene fresh-brackish water transition of the Black Sea, Chem. Geol., 219, 283295, doi:10.1016/j.chemgeo.2005.03.006.
  • Ogg, J. G. (2004), The Jurassic period, in A Geological Time Scale 2004, edited by F. Gradstein, J. G. Ogg, and A. G. Smith, pp. 307343, Cambridge Univ. Press., Cambridge, U. K.
  • Page, K. N. (2004), A sequence of biohorizons for the Subboreal Province lower Toarcian in northern Britain and their correlation with a submediterranean standard, Riv. It. Paleontol. Stratigr., 110, 109114.
  • Pearce, C. R., A. S. Cohen, A. L. Coe, and K. W. Burton (2008), Molybdenum isotope evidence for global ocean anoxia coupled with perturbations to the carbon cycle during the Early Jurassic, Geology, 36, 231234, doi:10.1130/G24446A.1.
  • Peucker-Ehrenbrink, B., and G. Ravizza (2000), The marine osmium record, Terra Nova, 12, 205219, doi:10.1046/j.1365-3121.2000.00295.x.
  • Poulson, R. L., C. Siebert, J. McManus, and W. M. Berelson (2006), Authigenic molybdenum isotope signatures in marine sediments, Geology, 34, 617620, doi:10.1130/G22485.1.
  • Powell, J. H. (1984), Lithostratigraphical nomenclature of the Liass Group in the Yorkshire Basin, Proc. Yorkshire Geol. Soc., 45, 5157.
  • Prauss, M., B. Ligouis, and H. Luterbacher (1991), Organic matter and palynomorphs in the ‘Posidonienschiefer’ (Toarcian, Lower Jurassic) of southern Germany, in Modern and Ancient Continental Shelf Anoxia, edited by R. V. Tyson, and T. H. Pearson, Geol Soc. Special Publ. London, 58, 335352.
  • Raiswell, R., and R. A. Berner (1985), Pyrite formation in euxinic and semi-euxinic sediments, Am. J. Sci., 285, 710724.
  • Reitz, A., M. Wille, T. F. Nägler, and G. T. de Lange (2007), Atypical Mo isotope signatures in eastern Mediterranean sediments, Chem. Geol., 245, 18, doi:10.1016/j.chemgeo.2007.06.018.
  • Riegraf, W., G. Werner, and F. Lörcher (1984), Die Posidonienschiefer. Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias e), 195 pp., Ferdinand Enke, Stuttgart, Germany.
  • Röhl, H.-J., A. Schmid-Röhl, W. Oschmann, A. Frimmel, and L. Schwark (2001), The Posidonia shale (lower Toarcian) of SW-Germany: An oxygen depleted ecosystem controlled by sealevel and palaeoclimate, Palaeogeogr. Palaeoclimatol. Palaeoecol., 169, 273299, doi:10.1016/S0031-0182(01)00201-2.
  • Rohling, E. J. (1994), Review and new aspects concerning the formation of eastern Mediterranean sapropels, Mar. Geol., 122, 128, doi:10.1016/0025-3227(94)90202-X.
  • Sælen, G., P. Doyle, and M. R. Talbot (1996), Stable isotope analyses of belemnite rostra from the Whitby Mudstone Fm., England: Surface water conditions during deposition of a marine black shale, Palaios, 11, 97117, doi:10.2307/3515065.
  • Sælen, G., R. V. Tyson, M. R. Talbot, and N. Telnæs (1998), Evidence of recycling of isotopically light CO2(aq) in stratified black shale basins; contrasts between the Whitby Mudstone and Kimmeridge Clay formations, United Kingdom, Geology, 26, 747750, doi:10.1130/0091-7613(1998)026<0747:EOROIL>2.3.CO;2.
  • Sælen, G., R. V. Tyson, N. Telnæs, and M. R. Talbot (2000), Contrasting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK, Palaeogeogr. Palaeoclimatol. Palaeoecol., 163, 163196, doi:10.1016/S0031-0182(00)00150-4.
  • Schmid-Röhl, A., and H. J. Röhl (2003), Overgrowth on ammonite conchs: Environmental implications for the Lower Toarcian Posidonia shale, Palaeontology, 46, 339352, doi:10.1111/1475-4983.00302.
  • Schmid-Röhl, A., H. J. Röhl, W. Oschmann, A. Frimmel, and L. Schwark (2002), Palaeoenvironmental reconstruction of Lower Toarcian epicontinental black shales (Posidonia shale, SW Germany): Global versus regional control, Geobios, 35, 1320, doi:10.1016/S0016-6995(02)00005-0.
  • Schouten, S., H. Van Kaam-Peters, W. I. C. Rijpstra, M. Schoell, and J. S. Sinninghe Damste (2000), Effects of an oceanic anoxic event on the stable carbon isotopic composition of Early Toarcian carbon, Am. J. Sci., 300, 122, doi:10.2475/ajs.300.1.1.
  • Schwark, L., and A. Frimmel (2004), Chemostratigraphy of the Posidonia black shale, SW-Germany II. Assessment of extent and persistence of photic-zone anoxia using aryl isoprenoid distributions, Chem. Geol., 206, 231248, doi:10.1016/j.chemgeo.2003.12.008.
  • Scott, C., T. W. Lyons, A. Bekker, Y. Shen, S. W. Poulton, X. Chu, and A. D. Anbar (2008), Tracing the stepwise oxygenation of the Proterozoic ocean, Nature, 452, 2008, doi:10.1038/nature06811.
  • Sohlenius, G., K.-C. Emeis, E. Andrén, T. Andrén, and A. Kohly (2001), Development of anoxia during the Holocene fresh brackish water transition in the Baltic Sea, Mar. Geol., 177, 221242, doi:10.1016/S0025-3227(01)00174-8.
  • Suan, G., B. Pittet, I. Bour, E. Mattioli, and L. V. Duarte (2008), Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: Consequence for its possible causes, Earth Planet. Sci. Lett., 267, 666679, doi:10.1016/j.epsl.2007.12.017.
  • Tribovillard, N.-P., A. Desprairies, E. Lallier-Vergès, P. Bertrand, N. Moureau, A. Ramdani, and L. Ramanampiso (1994), Geochemical study of organic-matter rich cycles from the Kimmeridge Clay Formation of Yorkshire (UK): Productivity versus anoxia, Palaeogeogr. Palaeoclimatol. Palaeoecol., 108, 165181, doi:10.1016/0031-0182(94)90028-0.
  • Tribovillard, N., A. Riboulleau, T. Lyons, and F. Baudin (2004a), Enhanced trapping of molybdenum by sulfurized organic matter of marine origin as recorded by various Mesozoic formations, Chem. Geol., 213, 385401, doi:10.1016/j.chemgeo.2004.08.011.
  • Tribovillard, N., A. Trentesaux, A. Ramdani, F. Baudin, and A. Riboulleau (2004b), Contrôles de l'accumulation de matière organique dans la Kimmeridge Clay Formation (Jurassique supérieur, Yorkshire, G. B.) et son équivalent latéral du Boulonnais: L'apport des éléments traces métalliques, Bull. Soc. Geol. Fr., 175(5), 491506, doi:10.2113/175.5.491.
  • Tribovillard, N., T. J. Algeo, T. Lyons, and A. Riboulleau (2006), Trace metals as paleoredox and paleoproductivity proxies: An update, Chem. Geol., 232, 1232, doi:10.1016/j.chemgeo.2006.02.012.
  • Tribovillard, N., T. W. Lyons, A. Riboulleau, and V. Bout-Roumazeilles (2008), A possible capture of molybdenum during early diagenesis of dysoxic sediments, Bull. Soc. Geol. Fr., 179, 312, doi:10.2113/gssgfbull.179.1.3.
  • Turgeon, S. C., R. A. Creaser, and T. J. Algeo (2007), Re-Os depositional ages and seawater Os estimates for the Frasnian-Famennian boundary: Implications for weathering rates, land plant evolution, and extinction mechanisms, Earth Planet. Sci. Lett., 261, 649661, doi:10.1016/j.epsl.2007.07.031.
  • van de Schootbrugge, B., J. M. McArthur, T. R. Bailey, Y. Rosenthal, J. D. Wright, and K. G. Miller (2005), Toarcian oceanic anoxic event: An assessment of global causes using belemnite C isotope records, Paleoceanography, 20, PA3008, doi:10.1029/2004PA001102.
  • Vorlicek, T. P., and G. R. Helz (2002), Catalysis by mineral surfaces: Implications for Mo geochemistry in anoxic environments, Geochim. Cosmochim. Acta, 66, 36793692, doi:10.1016/S0016-7037(01)00837-7.
  • Wignall, P. B., R. J. Newton, and C. T. S. Little (2005), The timing of paleoenvironmental change and cause-and-effect relationships during the Early Jurassic mass extinction in Europe, Am. J. Sci., 305, 10141032, doi:10.2475/ajs.305.10.1014.
  • Wignall, P. B., A. Hallam, R. J. Newton, J. G. Sha, E. Reeves, E. Mattioli, and S. Crowley (2006), Jurassic extinction in Tibet. An eastern Tethyan (Tibetan) record of the Early Jurassic (Toarcian) mass extinction event, Geobiology, 4, 179190, doi:10.1111/j.1472-4669.2006.00081.x.
  • Zerkle, A. L., C. H. House, R. P. Cox, and D. E. Canfield (2006), Metal limitation of cyanobacterial N2 fixation and implications for the Precambrian nitrogen cycle, Geobiology, 4, 285297, doi:10.1111/j.1472-4669.2006.00082.x.