SEARCH

SEARCH BY CITATION

References

  • Al-Ansari, K., P. Garcia, J. M. Riera, and A. Benarroch (2003), One-year cloud attenuation results at 50 GHz, Electron. Lett., 39(1), 136137.
  • Alouini, M. S., S. A. Borgsmiller, and P. G. Steffes (1997), Channel characterization and modeling for Ka-band very small aperture terminals, Proc. IEEE, 85(6), 981997.
  • Altshuler, E., and R. Marr (1989), Cloud attenuation at millimeter wavelengths, IEEE Trans. Antennas Propag., 37(11), 14731479.
  • Basili, P., S. Bonafoni, V. Mattioli, P. Ciotti, and E. R. Westwater (2006), Cloud model studies for the simulation of brightness temperatures, paper presented at the International Geoscience and Remote Sensing Symposium, Inst. of Electr. and Electron. Eng., Denver, Colo., 31 July to 4 Aug.
  • Bouchard, P. (2005), Improved algorithm for detecting cloud layers and amounts using retrievals from a surface-based multifrequency profiling radiometer, in Remote Sensing of Clouds and the Atmosphere X, edited by K. Schafer et al., Proc. SPIE, vol. 5979, 597903.
  • Bouchard, P., and D. V. Rogers (2006), Statistics on low-lying liquid and liquid-dominant mixed-phase clouds over Ottawa, paper presented at the European Conference on Antennas and Propagation (EuCAP), Eur. Space Agency, Nice, France, 6 – 10 Nov.
  • Boudala, F. S., G. A. Isaac, S. G. Cober, and Q. Fu (2004), Liquid fraction in stratiform mixed-phase clouds from in situ observations, Q. J. R. Meteorol. Soc., 130, 29192931.
  • Castanet, L., J. Lemorton, T. Konefal, A. K. Shukla, P. A. Watson, and C. L. Wrench (2001), Comparison of various methods for combining propagation effects and predicting loss in low-availability systems in the 20–50 GHz frequency range, Int. J. Satell. Commun., 19, 317334.
  • Chernykh, I. V., and R. E. Eskridge (1996), Determination of cloud amount and level from radiosonde soundings, J. Appl. Meteorol., 35(8), 13621369.
  • Cimini, D., E. R. Westwater, A. J. Gasiewski, M. Klein, V. Leuski, and J. C. Liljegren (2007), Ground-based millimeter- and submillimiter-wave observations of low vapor and liquid water contents, IEEE Trans. Geosci. Remote Sens., 45(7), 21692180.
  • Decker, M. T., E. R. Westwater, and F. O. Guiraud (1978), Experimental evaluation of ground-based microwave radiometric sensing of atmospheric temperature and water profiles, J. Appl. Meteorol., 17, 17881795.
  • Dintelmann, F., and G. Ortgies (1989), Semiempirical model for cloud attenuation prediction, Electron. Lett., 25(22), 14871488.
  • Dissanyake, A., J. Allnut, and F. Haidara (1997), A prediction model that combines rain attenuation and other propagation impairments along earth satellite paths, IEEE Trans. Antennas Propag., 45, 15461558.
  • Dissanayake, A., J. Allnutt, and F. Haidara (2001), Cloud attenuation modeling for SHF and EHF applications, Int. J. Satell. Commun., 19, 335345.
  • Garcia, P., A. Benarroch, and J. M. Riera (2008), Spatial distribution of cloud cover, Int. J. Satell. Commun. Network., 26, 141155.
  • Green, H. E. (2004), Propagation impairment on Ka-band SATCOM links in tropical and equatorial regions, IEEE Antennas Propag. Mag., 46(2), 3146.
  • Gultepe, I., G. A. Isaac, and S. G. Cober (2002), Cloud microphysical characteristics versus temperature for three Canadian field projects, Ann. Geophys., 20, 18911898.
  • Han, Y., and E. Westwater (1995), Remote sensing of tropospheric water vapor and cloud liquid water by integrated ground-based sensors, J. Atmos. Oceanic Technol., 12, 10501059.
  • Hanssen, R. (1998), Atmospheric heterogeneities in ERS Tandem SAR interferometry, DEOS Rep. 98.1, 136 pp., Delft Univ. Press, Delft, Netherlands.
  • ITU-R (1999), Attenuation due to clouds and fog, ITU-R Recomm. P.840-3, Geneva, Switzerland.
  • ITU-R (2007), Attenuation by atmospheric gases, ITU-R Recomm. P.676-7, Geneva, Switzerland.
  • Korolev, A. V., G. A. Isaac, S. Cober, J. W. Strapp, and J. Hallett (2003), Microphysical characterization of mixed-phase clouds, Q. J. R. Meteorol. Soc., 129, 3966.
  • Korolev, A. V., G. A. Isaac, J. W. Strapp, S. G. Cober, and H. W. Barker (2007), In situ measurements of liquid water content profiles in midlatitude stratiform clouds, Q. J. R. Meteorol. Soc., 133, 16931699.
  • Kumaraswamy, P. (1980), A generalized probability density function for double-bounded random processes, J. Hydrol. Amsterdam, 46, 7988.
  • Lemorton, J., L. Castanet, V. Hout, and T. Marsault (2001), A new opportunity for EHF propagation experiments: The EXPRESS campaign with the satellite STENTOR, Int. J. Satell. Commun., 19, 347362.
  • Lemus, L., L. Rikus, C. Martin, and R. Platt (1997), Global cloud liquid water path simulations, J. Clim., 10, 5264.
  • Liebe, H. J. (1989), MPM, An atmospheric millimeter wave propagation model, Int. J. Infrared Millimeter Waves, 10(6), 631650.
  • Liebe, H. J., G. A. Hufford, and T. Manabe (1991), A model for the complex permittivity of water at frequencies below 1 THz, Int. J. Infrared Millimeter Waves, 12(7), 659675.
  • Liljegren, J. C. (2000), Automatic self-calibration of ARM microwave radiometers, in Microwave Radiometry and Remote Sensing of the Earth's Surface and Atmosphere, edited by P. Pampaloni, and S. Paloscia, pp. 433443, VSP, Utrecht, Netherlands.
  • Luini, L., C. Riva, C. Capsoni, and A. Martellucci (2007), Attenuation in non rainy conditions at millimeter wavelengths: Assessment of a procedure, IEEE Trans. Geosci. Remote Sens., 45(7), 21502157.
  • Mandeep, J. S., and S. I. S. Hassan (2008), Cloud attenuation in millimeter wave and microwave frequencies for satellite applications over equatorial climate, Int. J. Infrared Millimeter Waves, 29, 201206.
  • Martellucci, A., et al. (2002a), Radiowave propagation modelling for SatCom services at Ku-band and above, in COST Action 255 Final Report, edited by R. A. Harris, Eur. Space Agency Spec. Publ., ESA SP-1252.
  • Martellucci, A., J. P. V. Poiares Baptista, and G. Blarzino (2002b), New climatological databases for ice depolarisation on satellite radio links, paper presented at COST Action 280 1st International Workshop, QinetiQ, Malvern, U. K, July .
  • Mattioli, V., E. R. Westwater, S. I. Gutman, and V. R. Morris (2005), Forward model studies of water vapor using scanning microwave radiometers, Global Positioning System, and radiosondes during the Cloudiness Inter-Comparison Experiment, IEEE Trans. Geosci. Remote Sens., 43(5), 10121021.
  • Mattioli, V., P. Basili, S. Bonafoni, P. Ciotti, L. Pulvirenti, N. Pierdicca, F. S. Marzano, F. Consalvi, E. Fionda, and E. R. Westwater (2006), Cloud liquid models for propagation studies: Evaluation and refinements, paper presented at the European Conference on Antennas and Propagation (EuCAP), Eur. Space Agency, Nice, France, 6 – 10 Nov.
  • Mattioli, V., E. R. Westwater, D. Cimini, J. S. Liljegren, B. M. Lesht, S. I. Gutman, and F. J. Schmidlin (2007), Analysis of radiosonde and ground-based remotely sensed PWV data from the 2004 North Slope of Alaska Arctic Winter Radiometric Experiment, J. Atmos. Oceanic Technol., 24(3), 415431.
  • Miloshevich, L. M., H. Vömel, D. N. Whiteman, B. M. Lesht, F. J. Schmidlin, and F. Russo (2006), Absolute accuracy of water vapor measurements from six operational radiosonde types launched during AWEX-G and implications for AIRS validation, J. Geophys. Res., 111, D09S10, doi:10.1029/2005JD006083.
  • Minnis, P., Y. Yi, J. Huang, and K. Ayers (2005), Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data, J. Geophys. Res., 110, D23204, doi:10.1029/2005JD006005.
  • Naud, C. M., J.-P. Muller, and E. E. Clothiaux (2003), Comparison between active sensor and radiosonde cloud boundaries over the ARM Southern Great Plains site, J. Geophys. Res., 108(D4), 4140, doi:10.1029/2002JD002887.
  • Pierdicca, N., L. Pulvirenti, and F. S. Marzano (2006), A model to predict cloud density from mid-latitude atmospheric soundings for microwave radiative transfer applications, Radio Sci., 41, RS6005, doi:10.1029/2006RS003463.
  • Racette, E. P., et al. (2005), Measurement of low amounts of precipitable water vapor using ground-based millimeterwave radiometry, J. Atmos. Oceanic Technol., 22(4), 317337.
  • Rosenkranz, P. W. (1998), Water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 33(4), 919928.
  • Rosenkranz, P. W. (1999), Correction to water vapor microwave continuum absorption: A comparison of measurements and models, Radio Sci., 34(4), 1025.
  • Salonen, E., and W. Uppala (1991), New prediction method of cloud attenuation, Electron. Lett., 27(12), 11061108.
  • Sarkar, S. K., I. Ahmad, J. Das, and A. K. De (2005), Cloud height, cloud temperature and cloud attenuation in microwave and millimeter wave frequency bands over Indian tropical east cost, Int. J. Infrared Millimeter Waves, 26, 329340.
  • Schmidlin, F. J., J. K. Luers, and P. D. Huffman (1986), Preliminary estimates of radiosonde thermistor errors, NASA Tech. Rep., NAS 1.602637, 15 pp.
  • Schroeder, J. A., and E. R. Westwater (1991), Users' guide to WPL microwave radiative transfer software, NOAA Tech. Rep. ERL-219 WPL-213, 84 pp., NOAA Environ. Res. Lab., Boulder, Colo.
  • Slobin, S. D. (1982), Microwave noise temperature and attenuation of clouds: Statistics of these effects at various sites in the United States, Alaska and Hawaii, Radio Sci., 17, 14431454.
  • Turner, D. D., B. M. Lesht, S. A. Clough, J. C. Liljegren, H. E. Revercomb, and D. C. Tobin (2003), Dry bias and variability RS80-H radiosondes: The ARM experience, J. Atmos. Oceanic Technol., 20, 117132.
  • Ulaby, F. T., R. K. Moore, and A. K. Fung (Eds.) (1981), Microwave Remote Sensing: Active and Passive, vol. 1, Microwave Remote Sensing Fundamentals and Radiometry, 456 pp., Addison-Wesley, Reading, Mass.
  • van Meijgaard, E., S. Crewell, and U. Löhnert (2004), Analysis of model predicted liquid water path and liquid water vertical distribution using observations from CLIWA-NET, paper presented at the 4th Study Conference on BALTEX, Gudhjem, Bornholm, Denmark, May .
  • Vömel, H., H. Selkirk, L. Miloshevich, J. Valverde, J. Valdés, E. Kyrö, R. Kivi, W. Stolz, G. Peng, and J. A. Diaz (2007), Radiation dry bias of the Vaisala RS92 humidity sensor, J. Atmos. Oceanic Technol., 24, 953963.
  • Wang, D., J. Carlson, D. B. Parsons, T. F. Hock, D. Lauritsen, H. L. Cole, K. Beierle, and E. Chamberlain (2003), Performance of operational radiosonde humidity sensors in direct comparison with a chilled mirror dew-point hygrometer and its climate implication, Geophys. Res. Lett., 30(16), 1860, doi:10.1029/2003GL016985.
  • Wang, J., W. B. Rossow, and Y.-C. Zhang (2000), Cloud vertical structure and its variations from a 20-year global rawinsonde data set, J. Clim., 13, 30413056.
  • Wang, J., H. Cole, D. J. Carlson, E. R. Miller, K. Beierle, A. Paukkunnen, and T. K. Laine (2002), Corrections of humidity measurement errors from the Vaisala RS80 radiosonde—Applications to TOGA COARE data, J. Atmos. Oceanic Technol., 19, 9811002.
  • Watson, P. A., and Y. F. Hu (1994), Prediction of attenuation on satellite-earth links for systems operating with low fade margins, Proc. Inst. Elect. Eng., Microw. Antennas Propag., 141, 467472.
  • Westwater, E. R. (1972), Microwave emissions from clouds, Tech. Rep. ERL-219 WPL 18, 43 pp., NOAA Environ. Res. Lab., Boulder, Colo.
  • Westwater, E. R. (1993), Ground-based microwave remote sensing of meteorological variables, in Atmospheric Remote Sensing by Microwave Radiometry, edited by M. A. Janssen, pp. 145213, John Wiley, New York.
  • Wrench, C. L., P. G. Davies, and J. Ramsden (1999), Global prediction of slant path attenuation on Earth space links at EHF, Int. J. Satell. Commun., 17, 177186.