Evaluation of EM-wave propagation in fully three-dimensional atmospheric refractive index distributions



[1] We present a novel numerical method, based on high-frequency localization, for evaluation of electromagnetic-wave propagation through atmospheres exhibiting fully three-dimensional (height, range and cross-range) refractive index variations. This methodology, which is based on localization of Rytov-integration domains to small tubes around geometrical optics paths, can accurately solve three-dimensional propagation problems in orders-of-magnitude shorter computing times than other algorithms available presently. For example, the proposed approach can accurately produce solutions for propagation of ≈20 cm GPS signals across hundreds of kilometers of realistic, three-dimensional atmospheres in computing times on the order of 1 hour in a present-day single-processor workstation, a task for which other algorithms would require, in such single-processor computers, computing times on the order of several months.