SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. Stegun (1972), Handbook of Mathematical Functions, 10th ed., Dover, Mineola, N. Y.
  • Adam, J., and L. Klinkenbusch (2006), Argument-recursive computation of legendre polynomials with applications in computational electromagnetics, in Proceedings of the IEEE Antennas and Propagation Society International Symposium With USNC/URSI National Radio Science and AMEREM Meetings, Albuquerque, New Mexico, IEEE Press, Piscataway, N. J.
  • Balanis, C. A. (1989), Advanced Engineering Electromagnetics, Wiley, New York.
  • Blume, S., and L. Klinkenbusch (2000), Spherical-multipole analysis in electromagnetics, in Frontiers in Electromagnetics, edited by D. Werner, and R. Mittra, 553 pp., IEEE Press, Piscataway, N. J.
  • Dahlquist, G. (1985), 33 years of numerical instability, part i, BIT, 25, 188204.
  • Gautschi, W. (1967), Computational aspects of three-term recurrence relations, SIAM Rev.
  • Gradshteyn, L., and I. Ryzhik (2000), Table of Integrals, Series, and Products, 6th ed., Academic, San Diego, Calif.
  • Heyman, E. (1996), Transient plane wave spectrum representation for radiation from volume source distribution, J. Math. Phys., 37, 658681.
  • Klinkenbusch, L., and C.-C. Oetting (2007), Correction to: Near-to-far-field transformation by a time-domain spherical-multipole analysis, IEEE Trans. Antennas Propag., 56(11), 3367.
  • Kunz, K., and R. Luebbers (1993), The Finite Difference Time Domain Method for Electromagnetics, CRC Press, Boca Raton, Fla.
  • Luebbers, R., K. Kunz, M. Schneider, and F. Hundsberger (1991), A finite-difference time-domain near zone to far zone transformation, IEEE Trans. Antennas Propag., 39, 429433.
  • Oetting, C.-C., and L. Klinkenbusch (2005), Near-to-far-field transformation by a time-domain spherical-multipole analysis, IEEE Trans. Antennas Propag., 53(6), 20542063.
  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling (1992), Numerical Recipes, The Art of Scientific Computing (Fortran Version), Cambridge Univ. Press, New York.
  • Remcom Inc (1998), Xfdtd (R) version 4.06, State College, Pa.
  • Rutishauser, H. (1952), Über die Instabilität von Methoden zur Integration gewöhnlicher Differentialgleichungen, ZaMP, 3, 6574.
  • Schwarz, H. R. (1997), Numerische Mathematik, 4th ed., B. G. Teubner, Stuttgart.
  • Shlivinski, A., and E. Heyman (1999), Time domain near field analysis of short pulse antennas. Part I: Spherical wave (multipole) expansion, IEEE Trans. Antennas Propag., 47, 271279.
  • Shlivinski, A., E. Heyman, and R. Kastner (1997), Antenna characterization in the time domain, IEEE Trans. Antennas Propag., 45, 11401149.
  • Shlivinski, A., E. Heyman, and A. J. Devaney (2001), Time domain plane wave to multipole transform, J. Math. Phys., 42, 59155919.
  • Taflove, A., and S. C. Hagness (2005), Computational Electromagnetics: The Finite-Difference Time-Domain Method, 3rd ed., Artech House, Norwood, Mass.
  • Walter, W. (1990), Gewöhnliche Differentialgleichungen, 4th ed., Springer, Berlin.
  • Zhang, S., and J. Jin (1996), Computation of Special Functions, Wiley, New York.