SEARCH

SEARCH BY CITATION

References

  • Albani, M., and S. Maci (2002), An exact line integral representation of the PO radiation integral from a flat perfectly conducting surfaces illuminated by elementary electric or magnetic dipoles, Turk. J. Elec. Eng., 10(2), 291305.
  • Ando, M. (1984), Radiation pattern analysis of reflector antennas, IECE Trans. Commun., 853860.
  • Ando, M., T. Murasaki, and T. Kinoshita (1991), Elimination of false singularities in GTD equivalent edge currents, IEE Proc. H, 138(4), 289296.
  • Asvestas, J. S. (1985), Line integrals and physical optics. Part I and Part II. The transformation of the solid-angle surface integral to a line integral, J. Opt. Soc. Am. A, 2(6), 891902.
  • Asvestas, J. S. (1986), The physical optics fields of an aperture on an perfecting conducting screen in terms of line integrals, IEEE Trans. Antennas Propag., 34(9), 11551159.
  • Breinbjerg, O., Y. Rahmat-Sami, and J. Appel-Hansen (1987), A theoretical examination of the physical theory of diffraction and related equivalent currents, technical report, Electromagn. Inst., Tech. Univ., Lyngby, Denmark.
  • Infante, L., and S. Maci (2003), Near-field line-integral representation of the Kirchhoff-type aperture radiation for a parabolic reflector, Antennas Wireless Propag. Lett., 2(1), 273276.
  • Johansen, P. M., and O. Breinbjerg (1995), An exact line integral representation of the physical optics scattered field: The case of an perfectly conducting polyhedral structure illuminated by electric Hertzian dipoles, IEEE Trans. Antennas Propag., 43(7), 689696.
  • Knopp, C. H. (1975), An extension of Rusch's asymptotic physical optics diffraction theory of a paraboloid antenna, IEEE Trans. Antennas Propag., 23(5), 741743.
  • Kottler, F. (1967), Diffraction at a black screen, Part 1: Electromagnetic theory, Prog. Opt., 6, 331377.
  • Michaeli, A. (1986a), Elimination of infinities in equivalent edge currents. Pt. 1: Fringe current components, IEEE Trans. Antennas Propag., 34(7), 912918.
  • Michaeli, A. (1986b), Elimination of infinities in equivalent edge currents. Pt. 2: Physical optics components, IEEE Trans. Antennas Propag., 34, 10341037.
  • Mitzner, K. M. (1974), Incremental length diffraction coefficients, Tech. Rep. MAL-TR-73–296, Aircraft Div., Northrop COT, Los Angeles, Calif.
  • Miyamoto, K., and E. Wolf (1962), Generalization of the Maggi-Rubinowicz theory of the boundary diffraction wave—Part I and Part II, J. Opt. Soc. Am., 52, 615637.
  • Murasaki, T., and M. Ando (1992), Equivalent edge currents by the modified edge representation: Physical optics components, IEICE Trans. Electron, E, 75-C(5), 617626.
  • Murasaki, T., M. Sato, Y. Inasawa, and M. Ando (1993), Equivalent edge currents for modified edge representation of flat plates: Fringe wave components, IEICE Trans. Electron, E, 76-C(9), 14121419.
  • Natsuhara, K., M. Ando, N. Goto, and G. Yoshida (1994), Radiation pattern analysis of a GPS microstrip antenna mounted on the roof of a car model, IEICE Trans. Commun., E, 77-B(6), 823830.
  • Oishi, M., K. Yukimasa, L. Rodriguez, T. Shijo, and M. Ando (2006), Relationship between physical optics and modified edge representation in case of the curved surface, IEICE Tech. Rep., EMT-06–107, 121126.
  • Rodriguez, L., and M. Ando (2007), Far field radiation pattern calculation of the parabolic reflector antenna in terms of line integrals by the modified edge representation, IEICE Trans. Electron, E, 90-C(2), 235242.
  • Rodriguez, L., K. Sakina, and M. Ando (2007a), Direct and analytical derivation of the vectorial geometrical optics from the modified edge representation line integrals for the physical optics, IEICE Trans. Electron, E, 88-C(12), 22432249.
  • Rodriguez, L., K. Yukimasa, T. Shijo, and M. Ando (2007b), Inner stationary phase point contribution of physical optic in terms of the modified edge representation line integrals (curved surfaces), Radio Sci., 42, RS6S24, doi:10.1029/2007RS003684.
  • Rubinowicz, A. (1965), The Miyamoto-Wolf diffraction wave, Prog. Opt., 4, 201240.
  • Rusch, W. V. T. (1974), Physical-optics diffraction coefficients for a parabolic, Electron. Lett., 10(17), 358360.
  • Ryan, C. E., and L. Peters Jr. (1969), Evaluation of edge-diffracted fields including equivalent currents for the caustic regions, IEEE Trans. Antennas Propag., 17, 292299.
  • Safak, M. (1976), Calculation of radiation patterns of paraboloidal reflectors by high-frequency asymptotic techniques, Electron. Lett., 12, 229231.
  • Sakina, K., S. Cui, and M. Ando (2001), Mathematical derivation of modified edge representation for reduction of surface radiation integral, IEICE Trans. Electron, E, 84-C(1), 7483.
  • Shijo, T., T. Hirano, and M. Ando (2005), Large-size local-domain basis functions with phase detour and Fresnel zone threshold for sparse reaction matrix in the method of moments, IEICE Trans. Electron, E, 88-C(12), 22082215.
  • Silver, S. (Ed.) (1947), Microwave Antenna Theory and Design, pp. 148158, Dover, Mineola, N. Y.
  • Tiberio, R., A. Toccafondi, A. Polemi, and S. Maci (2004), Incremental theory of diffraction: A new-improved formulation, IEEE Trans. Antennas Propag., 52(9), 22342243.
  • Ufimtsev, P. Y. (1971), Method of edge waves in the physical theory of diffraction, U.S. Air Force Foreign Technol. Div., Wright Patterson AFB, Ohio.
  • Ufimtsev, P. Y. (1991), Elementary edge waves and the physical theory of diffraction, Electromagnetics, 11(2), 125159.
  • Young, T. (1802), Lecture on the theory of light and colours, Philos. Trans. R. Soc. London, 20, 1248.