SEARCH

SEARCH BY CITATION

References

  • Abramowitz, M., and I. Stegun (1965), Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, Dover, New York.
  • Arcioni, P., M. Bressan, G. Conciauro, and L. Perregrini (1997), Generalized admittance matrix of arbitrary H-plane waveguide junctions by the BI-RME method, in Proceedings of International Microwave Symposium Digest, IEEE MTT-S, Denver, Colorado, 8–13 June, IEEE Press, Piscataway, N. J.
  • Arcioni, P., M. Bressan, and G. Conciauro (1999), Generalized admittance matrix of arbitrary E-plane waveguide junctions by the BI-RME method, in Proceedings of International Microwave Symposium Digest, IEEE MTT-S, Anaheim, California, 13–18 June, IEEE Press, Piscataway, N. J.
  • Balanis, C. A. (1989), Advanced Engineering Electromagnetics, John Wiley, New York.
  • Borwein, J., and P. Borwein (1998), Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley-Interscience, New York.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2005), Efficient computation of the 2-D Green's function for 1-D periodic structures using the Ewald method, IEEE Trans. Antennas Propag., 53(9), 29772983.
  • Capolino, F., D. R. Wilton, and W. A. Johnson (2007), Efficient computation of the 3D Green's function for the Helmholtz operator for a linear array of point sources using the Ewald method, J. Comput. Phys., 223(1), 250261.
  • Cogollos, S., S. Marini, V. E. Boria, P. Soto, A. Vidal, H. Esteban, J. V. Morro, and B. Gimeno (2003), Efficient modal analysis of arbitrarily shaped waveguides composed of linear, circular and elliptical arcs using the BI-RME method, IEEE Trans. Microwave Theory Tech., 51(12), 23782390.
  • Collin, R. E. (1991), Field Theory of Guided Waves, IEEE Press, Piscataway, N. J.
  • Conciauro, G., M. Bressan, and C. Zuffada (1984), Waveguide modes via an integral equation leading to a linear matrix eigenvalue problem, IEEE Trans. Microwave Theory Tech., 32(11), 14951504.
  • Conciauro, G., P. Arcioni, M. Bressan, and L. Perregrini (1996a), Wideband modeling of arbitrarily shaped H-plane waveguide components by the BI-RME method, IEEE Trans. Microwave Theory Tech., 44(7), 10571066.
  • Conciauro, G., P. Arcioni, M. Bressan, and L. Perregrini (1996b), Wideband modeling of arbitrarily shaped E-plane waveguide components by the BI-RME method, IEEE Trans. Microwave Theory Tech., 44(11), 20832092.
  • Conciauro, G., M. Guglielmi, and R. Sorrentino (2000), Advanced Modal Analysis: CAD Techniques for Waveguide Components and Filters, John Wiley, Chichester, U. K.
  • Courant, R., and D. Hilbert (1989), Methods of Mathematical Physics, vols. 1 and 2, Wiley Classics Library, Wiley-Interscience, New York.
  • Haberman, R. (1998), Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, Prentice-Hall, Upper Saddle River, N. J.
  • Hanson, G. W., and A. B. Yakovlev (2002), Operator Theory for Electromagnetics: An Introduction, Springer, New York.
  • Jordan, K. E., G. R. Richter, and P. Sheng (1986), An efficient numerical evaluation of the Green's function for the Helmholtz operator on periodic structures, J. Comput. Phys., 63(1), 222235.
  • Lampe, R., P. Klock, and P. Mayes (1985), Integral transforms useful for the accelerated summation of periodic, free-space Green's functions, IEEE Trans. Microwave Theory Tech., 33(8), 734736.
  • Morse, P. M., and H. Feshbach (1953), Methods of Theoretical Physics, Int. Ser. Pure Appl. Phys., McGraw-Hill, New York.
  • Mosig, J. R. (2003), Static Green's functions with conformal mapping and MATLAB, IEEE Antennas Propag. Mag., 45(5), 123135.
  • Orchard, H. J., and A. N. Willson Jr. (1997), Elliptic functions for filter design, IEEE Trans. Circuits Syst., Part I, Fundam. Theory Appl., 44(4), 273287.
  • Park, M.-J., and S. Nam (1998), Rapid summation of the Green's function for the rectangular waveguide, IEEE Trans. Microwave Theory Tech., 46(12), 21642166.
  • Park, M.-J., J. Park, and S. Nam (1998), Efficient calculation of the Green's function for the rectangular cavity, IEEE Microwave Guided Wave Lett., 8, 124126.
  • Quesada-Pereira, F. D., V. E. Boria, J. Pascual-Garca, A. Vidal, A. Alvarez-Melcon, J. L. Gomez-Tornero, and B. Gimeno (2007), Efficient analysis of arbitrarily shaped inductive obstacles in rectangular waveguides using a surface integral-equation formulation, IEEE Trans. Microwave Theory Tech., 55(4), 715721.
  • Schinzinger, R., and P. Laura (2003), Conformal Mapping: Methods and Applications, Dover, New York.
  • Spiegel, M. R. (1964), Complex Variables, McGraw-Hill, New York.
  • Weinberger, H. F. (1995), A First Course in Partial Differential Equations: With Complex Variables and Transform Methods, Dover, New York.