SEARCH

SEARCH BY CITATION

References

  • Ahlers, C. F., S. Finsterle, and G. S. Bodvarsson (1999), Characterization of subsurface pneumatic response at Yucca Mountain, J. Contam. Hydrol., 38(1–3), 4768, doi:10.1016/S0169-7722(99)00011-X.
  • Beven, K. (2006), A manifesto for the equifinality thesis, Hydrol. J., 320, 1836.
  • Birkholzer, J. T., and Y. W. Tsang (2000), Modeling the thermal-hydrologic processes in a large-scale underground heater test in partially saturated fractured tuff, Water Resour. Res., 36(6), 14311447, doi:10.1029/2000WR900025.
  • Björnsson, G., A. Hjartarson, G. S. Bodvarsson, and B. Steingrimsson (2003), Development of a 3-D geothermal reservoir model for the greater Hengill volcano in SW-Iceland, in Proceedings of the TOUGH Symposium 2003, LBNL-52494, edited by S. Finsterle et al., Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Brodsky, N. S., M. Riggins, J. Connolly, and P. Ricci (1997), Thermal expansion, thermal conductivity, and heat capacity measurements for boreholes UE25 NRG-4, UE25 NRG-5, USW NRG-6, and USW NRG-7/7, SAND95–1955 UC-814, Sandia Natl. Lab., Albuquerque, N. M.
  • Brooks, R. H., and J. J. Corey (1964), Hydraulic properties of porous media, Hydrol. Pap. 3, Colo. State Univ., Fort Collins.
  • Brutsaert, W. (2005), Hydrology—An Introduction, Cambridge Univ. Press, Cambridge, U. K.
  • Buesch, D. C., and R. W. Spengler (1998), Character of the middle nonlithophysal zone of the Topopah Spring tuff at Yucca Mountain, in Proceedings of the 8th International Conference on High-Level Radioactive Waste Management, Am. Nucl. Soc., La Grange Park, Ill.
  • Corey, A. T. (1954), The interrelation between gas and oil relative permeabilities, Prod. Mon., 19(1), 3841.
  • Engelhardt, I., S. Finsterle, and C. Hofstee (2003), Experimental and numerical investigation of flow phenomena in nonisothermal, variably saturated bentonite-crushed rock mixtures, Vadose Zone J., 2, 239246.
  • Finsterle, S. (1999a), iTOUGH2 user's guide, LBNL-40040 UC 400, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Finsterle, S. (1999b), iTOUGH2 command reference, LBNL-40041 UC 400, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Finsterle, S. (1999c), iTOUGH2 sample problems, LBNL-40042 UC 400, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Finsterle, S. (2004), Multiphase inverse modeling: Review and iTOUGH2 applications, Vadose Zone J., 3, 747762.
  • Finsterle, S. (2005), Demonstration of optimization techniques for groundwater plume remediation using iTOUGH2, Environ. Modell. Software, 21(5), 665680, doi:10.1016/j.envsoft.2004.11.012.
  • Finsterle, S., and B. A. Faybishenko (1999), Inverse modeling of a radial multistep outflow experiment for determining unsaturated hydraulic properties, Adv. Water Resour., 22(5), 431444, doi:10.1016/S0309-1708(98)00030-X.
  • Finsterle, S., and P. Persoff (1997), Determining permeability of tight rock samples using inverse modeling, Water Resour. Res., 33, 18031811, doi:10.1029/97WR01200.
  • Finsterle, S., C. Satik, and M. Guerrero (1998), Analysis of boiling experiments with inverse modeling, in Proceedings of the TOUGH Workshop '98, Rep. LBNL-41995, edited by K. Pruess, pp. 281287, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Finsterle, S., K. Pruess, G. Björnsson, and A. Battistelli (2000), Evaluation of geothermal well behavior using inverse modeling, in Dynamics of Fluids in Fractured Rocks, Geophys. Monogr. Ser., vol. 122, edited by B. Faybishenko, pp. 377387, AGU, Washington, D. C.
  • Finsterle, S., C. F. Ahlers, R. C. Trautz, and P. J. Cook (2003), Inverse and predicitive modeling of seepage into underground openings, J. Contam. Hydrol., 62–63, 89109, doi:10.1016/S0169-7722(02)00174-2.
  • Freifeld, B. M. (2001), Estimation of fracture porosity of an unsaturated fractured welded tuff using gas tracer testing, Ph.D. thesis, Univ. of Calif., Berkeley.
  • Ghezzehei, T. A., and H. H. Liu (2004), Calibrated properties model, MDL-NBS-HS-000003-REV-02, Bechtel SAIC Co., Las Vegas, Nev.
  • Guzman, A. G., A. M. Geddis, M. J. Henrich, C. F. Lohrstorfer, and S. P. Neuman (1996), Summary of air permeability data from single-hole injection tests in unsaturated fractured tuffs at the Apache Leap Research Site: Results of steady-state test interpretation, NUREG/CR-6360, U.S. Nucl. Regul. Comm., Washington, D. C.
  • Hirschfelder, J. O., C. F. Curtiss, and R. B. Bird (1954), Molecular Theory of Gases and Liquids, John Wiley, Hoboken, N. J.
  • Huang, K., Y. W. Tsang, and G. S. Bodvarsson (1999), Simultaneous inversion of air-injection tests in fractured unsaturated tuff at Yucca Mountain, Water Resour. Res., 35(8), 23752386, doi:10.1029/1999WR900120.
  • Illman, W. A. (2005), Type curve analyses of pneumatic single-hole tests in unsaturated fractured tuff: Direct evidence for a porosity-scale effect, Water Resour. Res., 41, W04018, doi:10.1029/2004WR003703.
  • Illman, W. A., and S. P. Neuman (2000), Type-curve interpretation of multi-rate single-hole pneumatic injection tests in unsaturated fractured rock, Ground Water, 38(6), 899911, doi:10.1111/j.1745-6584.2000.tb00690.x.
  • Illman, W. A., and S. P. Neuman (2001), Type-curve interpretation of a cross-hole pneumatic test in unsaturated fractured tuff, Water Resour. Res., 37(3), 583604, doi:10.1029/2000WR900273.
  • Illman, W. A., and S. P. Neuman (2003), Steady-state analyses of cross-hole pneumatic injection tests in unsaturated fractured tuff, J. Hydrol., 281(1–2), 3654, doi:10.1016/S0022-1694(03)00199-9.
  • Illman, W. A., and D. M. Tartakovsky (2005a), Asymptotic analysis of three-dimensional pressure interference tests: Point source solution, Water Resour. Res., 41, W01002, doi:10.1029/2004WR003431.
  • Illman, W. A., and D. M. Tartakovsky (2005b), Asymptotic analysis of cross-hole pneumatic injection tests in unsaturated fractured tuff, Adv. Water Resour., 28(11), 12171229, doi:10.1016/j.advwatres.2005.03.011.
  • International Formulation Committee (1967), A Formulation of the Thermodynamic Properties of Ordinary Water Substance, IFC Secr., Düsseldorf, Germany.
  • Lenhard, R. J., J. C. Parker, and S. Mishra (1989), On the correspondence between Brooks-Corey and van Genuchten models, J. Irrig. Drain. Eng., 115, 744, doi:10.1061/(ASCE)0733-9437(1989)115:4(744).
  • Levenberg, K. (1944), A method for the solution of certain nonlinear problem in least squares, Q. Appl. Math., 2, 164168.
  • Liu, H. H., C. Doughty, and G. S. Bodvarsson (1998), An active fracture model for unsaturated flow and transport in fracture rocks, Water Resour. Res., 34(10), 26332646, doi:10.1029/98WR02040.
  • Loomis, A. G. (1928), Solubilities of gases in water, in International Critical Tables, vol. III, edited by E. W. Washburn, pp. 255257, McGraw-Hill, New York.
  • Marquardt, D. W. (1963), An algorithm for least squares estimation of nonlinear parameters, SIAM J. Appl. Math., 11, 431441, doi:10.1137/0111030.
  • McLaughlin, D., and L. R. Townley (1996), A reassessment of the groundwater inverse problem, Water Resour. Res., 32(5), 11311161, doi:10.1029/96WR00160.
  • Moreno, L., and C. F. Tsang (1991), Multiple-peak response to tracer injection tests in single fractures: A numerical study, Water Resour. Res., 27(8), 21432150, doi:10.1029/91WR00507.
  • Mualem, Y. (1976), A new model for predicting the hydraulic conductivity of unsaturated porous media, Water Resour. Res., 12(3), 513522.
  • Mukhopadhyay, S., and Y. W. Tsang (2003), Uncertainties in coupled thermal-hydrological processes associated with the Drift Scale Test at Yucca Mountain, Nevada, J. Contam. Hydrol., 62–63, 595612, doi:10.1016/S0169-7722(02)00186-9.
  • Mukhopadhyay, S., and Y. W. Tsang (2008), Determination of transport properties from flowing fluid temperature logging in unsaturated fractured rocks: Theory and semianalytical solution, Water Resour. Res., 44, W10424, doi:10.1029/2008WR006860.
  • Mukhopadhyay, S., Y. W. Tsang, and J. T. Birkholzer (2007), Estimation of field-scale thermal conductivities of unsaturated fractured rocks from in situ temperature data, Water Resour. Res., 43, W09418, doi:10.1029/2006WR005283.
  • Narasimhan, T. N., and P. A. Witherspoon (1976), An integrated finite difference method for analyzing fluid flow in porous media, Water Resour. Res., 12(1), 5764, doi:10.1029/WR012i001p00057.
  • Pruess, K. (1991), TOUGH2—A general-purpose numerical simulator for multiphase fluid and heat flow, LBNL-29400, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Pruess, K., and T. N. Narasimhan (1985), A practical method for modeling fluid and heat flow in fractured porous media, SPEJ Soc. Pet. Eng. J., 25(1), 1426, doi:10.2118/10509-PA.
  • Pruess, K., C. M. Oldenburg, and G. J. Moridis (1999), TOUGH2 user's guide, version 2.0, LBNL-43134, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Ramsey, J., J. Bean, C. Lum, and E. Hardin (2004), Thermal conductivity of the potential repository horizon, MDL-NBS-GS-000005-REV010, Bechtel SAIC Co., Las Vegas, Nev.
  • Selker, J. S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxemburg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff, and M. B. Parlange (2006), Distributed fiber-optic temperature sensing for hydrologic systems, Water Resour. Res., 42, W12202, doi:10.1029/2006WR005326.
  • Tsang, Y. W., and J. T. Birkholzer (1999), Predictions and observations of the thermal-hydrological conditions in the single heater test, J. Contam. Hydrol., 38(1), 385425, doi:10.1016/S0169-7722(99)00021-2.
  • Tsang, C. F., J. Clyde, P. J. Cook, and R. Solbau (2007), Flowing fluid temperature logging method for determining hydrologic properties of unsaturated fractured rocks, LBNL-63564, Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Unger, A., S. Finsterle, and G. S. Bodvarsson (2004), Transport of radon gas into a tunnel at Yucca Mountain: Estimating large-scale fractured tuff hydraulic properties and implications for operation of the ventilation system, J. Contam. Hydrol., 70, 153171, doi:10.1016/j.jconhyd.2003.07.001.
  • van Genuchten, M. T. (1980), A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc., 44, 892898.
  • White, S., A. Creighton, P. Bixley, and W. Kissling (2003), Modeling the dewatering and depressurization of the Lihir open pit gold mine, in Proceedings of the TOUGH Symposium 2003, LBNL-52494, edited by S. Finsterle et al., Lawrence Berkeley Natl. Lab., Berkeley, Calif.
  • Zarrouk, S., M. O'Sullivan, A. Croucher, and W. Mannington (2007), Numerical modelling of production from the Poihipi dry steam zone: Wairakei geothermal system, New Zealand, Geothermics, 36, 289303, doi:10.1016/j.geothermics.2007.03.006.
  • Zimmerman, D. A., et al. (1998), A comparison of seven geostatistically based inverse approaches to estimate transmissivities for modeling advective transport by groundwater flow, Water Resour. Res., 34, 13731413, doi:10.1029/98WR00003.