SEARCH

SEARCH BY CITATION

Keywords:

  • catchment hydrology;
  • precipitation;
  • catchment characterization;
  • streamflow generation;
  • rainfall-runoff modeling;
  • evapotranspiration;
  • watershed hydrology

[1] Water fluxes in catchments are controlled by physical processes and material properties that are complex, heterogeneous, and poorly characterized by direct measurement. As a result, parsimonious theories of catchment hydrology remain elusive. Here I describe how one class of catchments (those in which discharge is determined by the volume of water in storage) can be characterized as simple first-order nonlinear dynamical systems, and I show that the form of their governing equations can be inferred directly from measurements of streamflow fluctuations. I illustrate this approach using data from the headwaters of the Severn and Wye rivers at Plynlimon in mid-Wales. This approach leads to quantitative estimates of catchment dynamic storage, recession time scales, and sensitivity to antecedent moisture, suggesting that it is useful for catchment characterization. It also yields a first-order nonlinear differential equation that can be used to directly simulate the streamflow hydrograph from precipitation and evapotranspiration time series. This single-equation rainfall-runoff model predicts streamflow at Plynlimon as accurately as other models that are much more highly parameterized. It can also be analytically inverted; thus, it can be used to “do hydrology backward,” that is, to infer time series of whole-catchment precipitation directly from fluctuations in streamflow. At Plynlimon, precipitation rates inferred from streamflow fluctuations agree with rain gauge measurements as closely as two rain gauges in each catchment agree with each other. These inferred precipitation rates are not calibrated to precipitation measurements in any way, making them a strong test of the underlying theory. The same approach can be used to estimate whole-catchment evapotranspiration rates during rainless periods. At Plynlimon, evapotranspiration rates inferred from streamflow fluctuations exhibit seasonal and diurnal cycles that agree semiquantitatively with Penman-Monteith estimates. Thus, streamflow hydrographs may be useful for reconstructing precipitation and evapotranspiration records where direct measurements are unavailable, unreliable, or unrepresentative at the scale of the landscape.