SEARCH

SEARCH BY CITATION

References

  • Best, D., and N. Fisher (1979), Efficient simulation of the von Mises distribution, Appl. Stat., 28, 152157, doi:10.2307/2346732.
  • Blum, R. S., Y. Zhang, B. Sadler, and R. Kozick (1999), On the approximation of correlated non-Gaussian noise pdfs using Gaussian mixture models, paper presented at 1st Conference on the Applications of Heavy Tailed Distributions in Economics, Engineering and Statistics, Am. Stat. Assoc., Washington, D. C.
  • Boyen, X., and D. Koller (1998), Tractable inference for complex stochastic processes, in Proceedings of the Conference on Uncertainty in AI, edited by G. Cooper, and S. Moral, pp. 3342, Morgan Kaufmann, San Francisco, Calif.
  • Boyen, X., and D. Koller (1999), Exploiting the architecture of dynamic systems, in Proceedings of the Sixteenth National Conference on Artificial Intellitence (AAAI-99), pp. 313320, AAAI Press, Menlo Park, Calif.
  • Casella, G., and C. P. Robert (1996), Rao-Blackwellisation of sampling schemes, Biometrika, 83(1), 8194, doi:10.1093/biomet/83.1.81.
  • Coppersmith, D., and S. Winograd (1990), Matrix multiplication via arithmetic progressions, J. Symbolic Comput., 9, 251280, doi:10.1016/S0747-7171(08)80013-2.
  • Dereszynski, E. W., and T. G. Dietterich (2007), Probabilistic models for anomaly detection in remote sensor data streams, in Proceedings of the 23rd Conference on Uncertainty in Artificial Intelligence, edited by R. Parr, and L. van der Gaag, pp. 7582, AUAI Pres, Arlington, Va.
  • Digalakis, V., J. R. Rohlicek, and M. Ostendorf (1993), ML estimation of a stochastic linear system with the EM algorithm and its application to speech recognition, IEEE Trans. Speech Audio Process., 1(4), 431442, doi:10.1109/89.242489.
  • Doucet, A., N. de Freitas, K. Murphy, and S. Russell (2000a), Rao-Blackwellised particle filtering for dynamic Bayesian networks, in Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence, edited by C. Boutilier, and M. Goldszmidt, pp. 176183, Morgan Kaufmann, San Francisco, Calif.
  • Doucet, A., S. Godsill, and C. Andrieu (2000b), On sequential Monte Carlo sampling methods for Bayesian filtering, Stat. Comput., 10(3), 197208, doi:10.1023/A:1008935410038.
  • Efron, B., and R. A. Olshen (1978), How broad is the class of normal scale mixtures? Ann. Stat., 6(5), 11591164, doi:10.1214/aos/1176344318.
  • Frühwirth, R. (1995), Track fitting with long-tailed noise: A Bayesian approach, Comput. Phys. Commun., 85, 189199, doi:10.1016/0010-4655(94)00121-H.
  • Ghahramani, Z., and G. E. Hinton (1996), Parameter estimation for linear dynamical systems, Tech. Rep. CRG-TR-96-2, Dep. of Comput. Sci., Univ. of Toronto, Toronto, Ont., Canada.
  • Goel, P., G. Dedeoglu, S. I. Roumeliotis, and G. S. Sukhatme (2000), Fault detection and identification in a mobile robot using multiple model estimation and neural network, in Proceedings of the IEEE International Conference on Robotics and Automation, pp. 23022309, Inst of Electr. and Electron. Eng., New York.
  • Hastie, T., R. Tibshirani, and J. Friedman (2001), The Elements of Statistical Learning, Springer, New York.
  • Hill, D. (2007), Data mining approaches to complex environmental problems, Ph.D. thesis, Univ. of Ill. at Urbana-Champaign, Champaign.
  • Hill, D. J., and B. S. Minsker (2006), Automated fault detection for in-situ environmental sensors, in Hydroinformatics 2006: Proceedings of the 7th International Conference on Hydroinformatics, edited by P. Gourbesville, J. Cunge, and S.-Y. Liong, Res. Publ. Serv., Chennai, India.
  • Hill, D. J., B. S. Minsker, and E. Amir (2007), Real-time Bayesian anomaly detection for environmental sensor data, paper presented at 32nd Congress, Int. Assoc. of Hydraul. Eng. and Res., Venice, Italy.
  • Hodge, V. J., and J. Austin (2004), A survey of outlier detection methodologies, Artif. Intell. Rev., 22, 85126.
  • Kalman, R. E. (1960), A new approach to linear filtering and prediction problems, Trans. ASME, Ser. D, 82, 3545.
  • Koushanfar, F., M. Potkonjak, and A. Sangiovanni-Vincentelli (2003), On-line fault detection of sensor measurements, in Second IEEE International Conference on Sensors, vol. 2, pp. 974979, Inst. of Electr. and Electron. Eng., New York.
  • Krajewski, W. F., and K. L. Krajewski (1989), Real-time quality control of streamflow data—A simulation study, Water Resour. Bull., 25(2), 391399.
  • Lerner, U. N. (2002), Hybrid Bayesian networks for reasoning about complex systems, Ph.D. thesis, Stanford Univ., Stanford, Calif.
  • Lerner, U., and R. Parr (2001), Inference in hybrid networks: Theoretical limits and practical algorithms, Proceedings of the 17th Annual Conference on Uncertainty in Artificial Intelligence, edited by J. Breese, and D. Koller, pp. 310318, Morgan Kaufmann, San Francisco, Calif.
  • Lerner, U., R. Parr, D. Koller, and G. Biswas (2000), Bayesian fault detection and diagnosis in dynamic systems, in Proceedings of the Seventeenth National Conference on Artificial Intelligence, pp. 531537, AAAI Press, Menlo Park, Calif.
  • Liu, H., and H. Motoda (1998), Feature transformation and subset selection, IEEE Intell. Syst., 13(2), 2628, doi:10.1109/MIS.1998.671088.
  • Liu, X., and A. Goldsmith (2004), Kalman filtering with partial observation losses, in 43rd IEEE Conference on Decision and Control, vol. 4, pp. 41804186, Inst. of Electr. and Electron. Eng., New York.
  • Maybeck, P. S. (1979), Stochastic Models, Estimation, and Control, 2nd ed., Academic, San Diego, Calif.
  • McLachlan, G., and D. Peel (2000), Finite Mixture Models, John Wiley, New York.
  • Meinhold, R. J., and N. D. Singpurwalla (1989), Robustification of Kalman filter models, J. Am. Stat. Assoc., 84(406), 479486, doi:10.2307/2289933.
  • Mourad, M., and J. L. Bertrand-Krajewski (2002), A method for automatic validation of long time series of data in urban hydrology, Water Sci. Technol., 45(4–5), 263270.
  • National Research Council (2006), CLEANER and NSF's Environmental Observatories, Natl. Acad. Press, Washington, D. C.
  • National Science Foundation (2005), Sensors for Environmental Observatories Rrport of the NSF sponsored workshop December 2004, Arlington, Va.
  • Nicholson, A. E., and J. M. Brady (1994), Dynamic belief networks for discrete monitoring, IEEE Trans. Syst. Man Cybern., 24(11), 15931610, doi:10.1109/21.328910.
  • Peña, D., and I. Guttman (1988), Bayesian approach to robustifying the Kalman filter, in Bayesian Analysis of Time Series and Dynamic Models, edited by J. C. Spall, pp. 227253, Marcel Dekker, New York.
  • Ramanathan, N., L. Balzano, M. Burt, D. Estrin, E. Kohler, T. Harmon, C. Harvey, J. Jay, S. Rothberg, and M. Srivastava (2006), Monitoring a toxin in a rural rice field with a wireless sensor network, Tech. Rep. 62, Cent. for Embedded Network Syst., Univ. of Calif., Los Angeles, Calif.
  • Schick, I. C., and S. K. Mitter (1994), Robust recursive estimation in the presence of heavy-tailed noise, Ann. Stat., 22(2), 10451080, doi:10.1214/aos/1176325511.
  • Shumway, R. H., and D. S. Stoffer (1982), An approach to time series smoothing and forecasting using the EM algorithm, J. Time Ser. Anal., 3(4), 253264, doi:10.1111/j.1467-9892.1982.tb00349.x.
  • Spall, J. C. (1988), An overview of key developments in dynamic modeling and estimation, in Bayesian Analysis of Time Series and Dynamic Models, edited by J. C. Spall, pp. xvxxvii, Marcel Dekker, New York.