SEARCH

SEARCH BY CITATION

References

  • Allison, G. B., and M. W. Hughes (1983), The use of natural tracers as indicators of soil-water movement in a temperate semi-arid region, J. Hydrol., 60, 157173, doi:10.1016/0022-1694(83)90019-7.
  • Allison, G. B., P. G. Cook, S. R. Barnett, G. R. Walker, I. D. Jolly, and M. W. Hughes (1990), Land clearance and river salinisation in the western Murray Basin, Australia, J. Hydrol., 119, 120, doi:10.1016/0022-1694(90)90030-2.
  • Alloway, B. J. (2005), Bioavailability of elements in soil, in Essentials of Medical Geology, edited by O. Selinus et al., pp. 347372, Elsevier, Amsterdam.
  • Amini, M., K. Mueller, K. C. Abbaspour, T. Rosenberg, M. Afyuni, K. N. Moller, M. Sarr, and C. A. Johnson (2008), Statistical modeling of global geogenic fluoride contamination in groundwaters, Environ. Sci. Technol., 42(10), 36623668, doi:10.1021/es071958y.
  • Barbiero, L., V. Valles, and A. Regeard (1995), Fluorite precipitation and geochemical control of calcium in alkali soils of Niger. Consequences for a quantitative estimation of the geochemical evolution of soil solution, C. R. Acad. Sci., IIA, C. R. Geosci., 321, 11471154.
  • Blackburn, G., and S. McLeod (1983), Salinity of atmospheric precipitation in the Murray-Darling drainage division, Australia, Aust. J. Soil Res., 21, 411434, doi:10.1071/SR9830411.
  • Bronson, K. F., J. D. Booker, J. P. Bordovsky, J. W. Keeling, T. A. Wheeler, R. K. Boman, M. N. Parajulee, E. Segarra, and R. L. Nichols (2006), Site-specific irrigation and nitrogen management for cotton production in the Southern High Plains, Agron. J., 98, 212219, doi:10.2134/agronj2005.0149.
  • Chivas, A. R., A. S. Andrew, W. B. Lyons, M. I. Bird, and T. H. Donnelly (1991), Isotopic constraints on the origin of salts in Australian playas. 1 Sulfur, Palaeogeogr. Palaeoclimatol. Palaeoecol., 84, 309332, doi:10.1016/0031-0182(91)90051-R.
  • Clifford, D. (1999), Ion exchange and inorganic adsorption, in Water Quality and Treatment, edited by A. Letterman, pp. 9, 13, Am. Water Works Assoc., McGraw-Hill, New York.
  • Cook, P. G., A. L. Telfer, and G. R. Walker (1993), Potential for salinization of the ground water beneath mallee areas of the Murray Basin, CGS Rep. 42, Flinders Univ., Adelaide, South Aust., Australia.
  • Cook, P. G., F. W. Leaney, and I. D. Jolly (2001), Groundwater recharge in the mallee region and salinity implications for the Murray River—A review, Tech. Rep. 45/01, 133 pp., CSIRO Land and Water, Adelaide, South Aust., Australia.
  • Cook, P. G., F. W. Leaney, and M. Miles (2004), Groundwater recharge in the north-east mallee region, South Australia, Tech. Rep. 25/04, 80 pp., CSIRO Land and Water, Adelaide, South Aust., Australia.
  • Davis, S. N., D. O. Whittemore, and J. Fabryka-Martin (1998), Uses of chloride/bromide ratios in studies of potable water, Ground Water, 36, 338350, doi:10.1111/j.1745-6584.1998.tb01099.x.
  • Deans, J. D., W. M. Edmunds, D. K. Lindley, C. B. Gaye, B. Dreyfus, J. J. Nizinski, M. Neyra, K. Ingleby, and R. C. Munro (2005), Nitrogen in interstitial waters in the Sahel; Natural baseline, pollutant or resource? Plant Soil, 271, 4762, doi:10.1007/s11104-004-1994-5.
  • Dogramaci, S. S., A. L. Herczeg, S. L. Schiff, and Y. Bone (2001), Controls on δ34S and δ18O of dissolved sulfate in aquifers of the Murray Basin, Australia and their use as indicators of flow processes, Appl. Geochem., 16, 475488, doi:10.1016/S0883-2927(00)00052-4.
  • Dzombak, D. A., and F. M. M. Morel (1990), Surface Complexation Modeling: Hydrous Ferric Oxide, 39 pp., John Wiley, New York.
  • Edmunds, M., and P. L. Smedley (2005), Fluoride in natural waters, in Essentials of Medical Geology, edited by O. Selinus et al., pp. 310329, Elsevier, Amsterdam.
  • Favreau, G., B. Cappelaere, S. Massuel, M. Leblanc, M. Boucher, N. Boulain, and C. Leduc (2009), Land clearing, climate variability and water resources increase in semiarid southwest Niger: A review, Water Resour. Res., 45, W00A16, doi:10.1029/2007WR006785.
  • Fischer, H., D. Wagenbach, and J. Kipfstuhl (1998), Sulfate and nitrate firn concentrations on the Greenland ice sheet: 2. Temporal anthropogenic deposition changes, J. Geophys. Res., 103, 21,93521,942.
  • Fluhler, H., J. Polomski, and P. Blaser (1982), Retention and movement of fluoride in soils, J. Environ. Qual., 11, 461468.
  • Gat, J. R., and R. Gonfiantini (1981), Stable Isotope Hydrology: Deuterium and Oxygen-18 in the Water Cycle, IAEA Tech. Rep. Ser., vol. 210, 33 pp., Int. At. Energy Agency, Vienna.
  • Grassineau, N. V., D. P. Mattey, and D. Lowry (2001), Sulfur isotope analysis of sulfide and sulfate minerals by continuous flow-isotope ratio mass spectrometry, Anal. Chem., 73, 220225, doi:10.1021/ac000550f.
  • Grey, D. C., and M. L. Jensen (1972), Bacteriogenic sulfur in air pollution, Science, 177, 10991100, doi:10.1126/science.177.4054.1099.
  • Hem, J. D. (1985), Study and interpretation of the chemical characteristics of natural water, U.S. Geol. Surv. Water Supply Pap. 2254, 263 pp.
  • Herczeg, A. L., S. S. Dogramaci, and F. W. J. Leaney (2001), Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia, Mar. Freshwater Res., 52, 4152, doi:10.1071/MF00040.
  • Holt, B. D., R. Kumar, and P. T. Cunningham (1982), Primary sulfates in atmospheric sulfates: Estimation by oxygen isotope ratio measurements, Science, 217, 5153, doi:10.1126/science.217.4554.51.
  • Jolly, I. D., P. G. Cook, G. B. Allison, and M. W. Hughes (1989), Simultaneous water and solute movement through unsaturated soil following an increase in recharge, J. Hydrol., 111, 391396, doi:10.1016/0022-1694(89)90270-9.
  • Jolly, I. D., M. Trenordan, A. N. Holub, P. G. Cook, and J. C. Dighton (1990), Recharge studies in the western Murray Basin. 4. Results of a drilling program at Kulkami, Tech. Memo. 90/3, Div. of Water Resour., CSIRO, Floreat Park, West. Aust., Australia.
  • Kilroy, K. C. (1991), Ground-water conditions in the Amargosa Desert, Nevada-California, 1952–87, U.S. Geol. Surv. Water Resour. Invest. Rep., 89-4101, 91 pp.
  • Krouse, H. R., and B. Mayer (2000), Sulphur and oxygen isotopes in sulphate, in Environmental Tracers in Subsurface Hydrology, edited by P. Cook, and A. L. Herzeg, pp. 195232, Kluwer Acad., Boston, Mass.
  • Leaney, F. W., A. L. Herczeg, and G. R. Walker (2003), Salinization of a fresh palaeo-ground water resource by enhanced recharge, Ground Water, 41, 8492, doi:10.1111/j.1745-6584.2003.tb02571.x.
  • Lide, D. R. (1991), Handbook of Chemistry and Physics, CRC Press, Boca Raton, Fla.
  • Mast, M. A., J. T. Turk, G. P. Ingersoll, D. W. Clow, and C. L. Kester (2001), Use of stable sulfur isotopes to identify sources of sulfate in Rocky Mountain snowpacks, Atmos. Environ., 35, 33033313, doi:10.1016/S1352-2310(00)00507-0.
  • McMahon, P. B., K. F. Dennehy, B. W. Bruce, J. K. Böhlke, R. L. Michel, J. J. Gurdak, and D. B. Hurlbut (2006), Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States, Water Resour. Res., 42, W03413, doi:10.1029/2005WR004417.
  • Muller, W. J., R. G. M. Heath, and M. H. Villet (1998), Finding the optimum: Fluoridation of potable water in South Africa, Water SA, 24, 2127.
  • National Research Council (2006), Fluoride in Drinking Water: A Scientific Review of EPA's Standards, 508 pp., Natl. Acad., Washington, D. C.
  • Nativ, R. (1988), Hydrogeology and hydrogeochemistry of the Ogallala Aquifer, Southern High Plains, Texas Panhandle and eastern New Mexico, Rep. Invest. 177, 64 pp., Tex. Bur. of Econ. Geol., Austin, Tex.
  • Nativ, R., and D. A. Smith (1987), Hydrogeology and geochemistry of the Ogallala aquifer, Southern High Plains, J. Hydrol., 91, 217253, doi:10.1016/0022-1694(87)90206-X.
  • Novak, M., M. J. Mitchell, I. Jackova, F. Buzek, J. Schweigstillova, L. Erbanova, R. Prikryl, and D. Fottova (2007), Processes affecting oxygen isotope ratios of atmospheric and ecosystem sulfate in two contrasting forest catchments in central Europe, Environ. Sci. Technol., 41, 703709, doi::10.1021/es0610028.
  • Phillips, F. M. (1994), Environmental tracers for water movement in desert soils of the American Southwest, Soil Sci. Soc. Am. J., 58, 1424.
  • Rhoades, J. D. (1982), Soluble salts, in Methods of Soil Analysis, Part 2, Soil Sci. Soc. Am. Book Ser., vol. 5, 2nd ed., edited by A. L. Page, R. H. Miller, and D .R. Keeney, pp. 167180, Soil Sc. Soc. of Am., Madison, Wis.
  • Scanlon, B. R., K. Keese, R. C. Reedy, J. Simunek, and B. J. Andraski (2003), Variations in flow and transport in thick desert vadose zones in response to paleoclimatic forcing (0–90 kyr): Field measurements, modeling, and uncertainties, Water Resour. Res., 39(7), 1179, doi:10.1029/2002WR001604.
  • Scanlon, B. R., R. C. Reedy, D. A. Stonestrom, D. E. Prudic, and K. F. Dennehy (2005), Impact of land use and land cover change on groundwater recharge and quality in the southwestern USA, Global Change Biol., 11, 15771593, doi:10.1111/j.1365-2486.2005.01026.x.
  • Scanlon, B. R., I. Jolly, M. Sophocleous, and L. Zhang (2007a), Global impacts of conversions from natural to agricultural ecosystems on water resources: Quantity versus quality, Water Resour. Res., 43, W03437, doi:10.1029/2006WR005486.
  • Scanlon, B. R., R. C. Reedy, and J. A. Tachovsky (2007b), Semiarid unsaturated zone chloride profiles: Archives of past land use change impacts on water resources in the southern High Plains, United States, Water Resour. Res., 43, W06423, doi:10.1029/2006WR005769.
  • Scanlon, B. R., R. C. Reedy, and K. F. Bronson (2008), Impacts of land use change on nitrogen cycling archived in semiarid unsaturated zone nitrate profiles, Southern High Plains, Texas, USA, Environ. Sci. Technol., 42(20), 75667572, doi:10.1021/es800792w.
  • Simpson, H. J., and A. L. Herczeg (1994), Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling Basin, Australia, J. Hydrol., 154, 323350, doi:10.1016/0022-1694(94)90224-0.
  • Stonestrom, D., D. E. Prudic, R. J. Laczniak, K. C. Akstin, R. A. Boyd, and K. K. Henkelman (2003), Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River channel, Amargosa Desert, Nye County, Nevada, U.S. Geol. Surv. Open File Rep., 03-104.
  • U.S. Department of Agriculture (1995), Soil Survey Geographic Data Base, SSURGO, Misc. Pub. 1527, Nat. Resour. Conserv. Serv., Washington, D. C.
  • Van Stempvoort, D. R., E. J. Reardon, and P. Fritz (1990), Fractionation of sulfur and oxygen isotopes in sulfate by soil sorption, Geochim. Cosmochim. Acta, 54, 28172826, doi:10.1016/0016-7037(90)90016-E.
  • Vogelmann, J. E., S. M. Howard, L. Yang, C. R. Larson, B. K. Wylie, and N. van Driel (2001), Completion of the 1990s National Land Cover Data Set for the conterminous United States from Landsat thematic mapper data and ancillary data sources, Photogramm. Eng. Remote Sens., 67, 650662.
  • Walker, G. R., I. D. Jolly, and P. G. Cook (1991), A new chloride leaching approach to the estimation of diffuse recharge following a change in land use, J. Hydrol., 128, 4967.
  • Walvoord, M. A., F. M. Phillips, D. A. Stonestrom, R. D. Evans, P. C. Hartsough, B. D. Newman, and R. G. Striegl (2003), A reservoir of nitrate beneath desert soils, Science, 302, 10211024, doi:10.1126/science.1086435.
  • Wood, W. W., and B. F. Jones (1990), Origin of solutes in saline lakes and springs on the Southern High Plains of Texas and New Mexico, in Geologic Framework and Regional Hydrology: Upper Cenozoic Blackwater Draw and Ogallala Formations, Great Plains, edited by T. C. Gustavson, pp. 193208, Bur. of Econ. Geol., Univ. of Tex. at Austin, Austin, Tex.
  • World Health Organization (2004), Guidelines for Drinking-Water Quality, 3rd ed., 536 pp., Geneva, Switzerland.