SEARCH

SEARCH BY CITATION

References

  • Abbaspour, K., R. Kasteel, and R. Schuh (2000), Inverse parameter estimation in a layered unsaturated field soil, Soil Sci., 165, 109123, doi:10.1097/00010694-200002000-00002.
  • Asano, M., S. Sudo, N. Shinyashiki, S. Yagihara, T. Ohe, N. Morimoto, and K. Fujita (2007), Studies of dielectric properties of bentonite obtained by broadband dielectric spectroscopy, in Seventh International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, edited by S. Okamura et al., pp. 2530, Shizuoka Univ., Hamamatsu, Japan.
  • Becker, R. (2004), Spatial time domain reflectometry for monitoring transient moisture profiles, Ph.D. thesis, 257 pp., Inst. for Water and River Basin Manage., Univ. of Karlsruhe, Karlsruhe, Germany.
  • Behari, J. (2005), Microwave Dielectric Behavior of Wet Soils, Remote Sens. Digital Image Process., vol. 8, Springer, New York.
  • Boyarskii, D., V. Tikhonov, and N. Komarova (2002), Model of dielectric constant of bound water in soil for applications of microwave remote sensing, J. Electromagn. Waves Appl., 16, 411412, doi:10.1163/156939302X01227.
  • Buchner, R., J. Barthel, and J. Stauber (1999), The dielectric relaxation of water between 0°C and 35°C, Chem. Phys. Lett., 306, 5763, doi:10.1016/S0009-2614(99)00455-8.
  • Dahan, O. (2005), Flexible probe for measuring moisture content in soils, Patent US 6956381 B2, U.S. Patent and Trademark Off., Washington, D. C.
  • Dalton, F. N., and M. T. van Genuchten (1986), The time-domain reflectometry method for measuring soil water content and salinity, Geoderma, 38, 237250, doi:10.1016/0016-7061(86)90018-2.
  • Davis, J., and A. Annan (1977), Electromagnetic detection of soil moisture—Progress report I, Can. J. Remote Sens., 3, 7686.
  • Evett, S. R., and G. W. Parkin (2005), Advances in soil water content sensing: The continuing maturation of technology and theory, Vadose Zone J., 4, 986991, doi:10.2136/vzj2005.0099.
  • Feng, W., C. P. Lin, R. J. Deschamps, and V. P. Drnevich (1999), Theoretical model of a multisection time domain reflectometry measurement system, Water Resour. Res., 35, 23212332, doi:10.1029/1999WR900123.
  • Ferré, P. A., H. H. Nissen, and J. Simunek (2002), The effect of the spatial sensitivity of TDR on inferring soil hydraulic properties from water content measurements made during the advance of a wetting front, Vadose Zone J., 1, 281288.
  • Fredlund, D. G., and H. Rahardjo (1993), Soil Mechanics for Unsaturated Soils, John Wiley, New York.
  • Friedman, S. (1998), A saturation degree-dependent composite spheres model for describing the effective dielectric constant of unsaturated porous media, Water Resour. Res., 34, 29492961, doi:10.1029/98WR01923.
  • Greco, R. (2006), Soil water content inverse profiling from single TDR waveforms, J. Hydrol., 317, 325339, doi:10.1016/j.jhydrol.2005.05.024.
  • Gutina, A., T. Antropova, E. Rysiakiewicz-Pasek, K. Virnik, and Y. Feldman (2003), Dielectric relaxation in porous glasses, Microporous Mesoporous Mater., 58, 237254, doi:10.1016/S1387-1811(02)00651-0.
  • Hakansson, G. (1997), Reconstruction of soil moisture profiles, M.S. thesis, Dep. of Electromagn. Theory, R. Inst. of Technol., Stockholm.
  • He, S., V. G. Romanov, and S. Stroem (1994), Analysis of the Green's function approach to one-dimensional inverse problems. II. Simultaneous reconstruction of two parameters, J. Math. Phys. N. Y., 35, 23152335, doi:10.1063/1.530555.
  • Heimovaara, T. J., and W. Bouten (1990), A computer-controlled 36-channel time domain reflectometry system for monitoring soil water contents, Water Resour. Res., 26, 23112316.
  • Heimovaara, T. J., J. A. Huisman, J. A. Vrugt, and W. Bouten (2004), Obtaining the spatial distribution of water content along a TDR probe using the SCEM-UA Bayesian inverse modeling scheme, Vadose Zone J., 3, 11281145.
  • Hilhorst, M., C. Dirksen, F. Kampers, and R. Feddes (2001), Dielectric relaxation of bound water versus soil matric pressure, Soil Sci. Soc. Am. J., 65, 311314.
  • Hoekstra, P., and A. Delaney (1974), Dielectric properties of soils at UHF and microwave frequencies, J. Geophys. Res., 79, 16991708, doi:10.1029/JB079i011p01699.
  • Hook, W. R., N. J. Livingston, Z. J. Sun, and P. B. Hook (1992), Remote diode shorting improves measurement of soil water by time domain reflectometry, Soil Sci. Soc. Am. J., 56, 13841391.
  • Huebner, C. (1999), Entwicklung hochfrequenter Messverfahren zur Bodenfeuchtebestimmung, Sci. Rep. FZKA 6329, pp., Forschungszent. Karlsruhe, Karlsruhe, Germany.
  • Huebner, C., and A. Brandelik (2000a), Distinguished problems in soil and snow aquametry, in Sensors Update, edited by H. Baltes, W. Göpel, and J. Hesse, pp. 317340, John Wiley, Weinheim, Germany.
  • Huebner, C., and A. Brandelik (2000b), Near surface moisture sensing, in Surface Sensing Technologies and Applications, edited by C. Nguyen, Proc. SPIE, 4129, 8896.
  • Huebner, C., and K. Kupfer (2007), Modelling of electromagnetic wave propagation along transmission lines in inhomogeneous media, Meas. Sci. Technol., 18, 11471154, doi:10.1088/0957-0233/18/4/023.
  • Huebner, C., S. Schlaeger, R. Becker, A. Scheuermann, A. Brandelik, W. Schaedel, and R. Schuhmann (2005), Advanced measurement methods in time domain reflectometry for soil moisture determination, in Electromagnetic Aquametry, edited by K. Kupfer, pp. 317347, Springer, Berlin.
  • Huisman, J. A., J. J. J. C. Snepvangers, W. Bouten, and G. B. M. Heuvelink (2003), Monitoring temporal development of spatial soil water content variation: Comparison of ground penetrating radar and time domain reflectometry, Vadose Zone J., 2, 519529.
  • Ishida, T., T. Makino, and C. Wang (2000), Dielectric-relaxation spectroscopy of kaolinite, montmorillonite, allophane and imogolite under moist conditions, Clays Clay Miner., 48, 7584, doi:10.1346/CCMN.2000.0480110.
  • Ishida, T., M. Kawase, K. Yagi, J. Yamakawa, and K. Fukada (2003), Effects of the counterion on dielectric spectroscopy of a montmorillonite suspension over the frequency range 105–1010 Hz, J. Colloid Interface Sci., 268, 121126, doi:10.1016/S0021-9797(03)00688-X.
  • Jacobsen, O. H., and P. Schjønning (1993), Field evaluation of time domain reflectometry for soil water measurement, J. Hydrol., 151, 159172, doi:10.1016/0022-1694(93)90234-Z.
  • Kaatze, U. (2005), Electromagnetic wave interactions with water and aqueous solutions, in Electromagnetic Aquametry, edited by K. Kupfer, pp. 1537, Springer, Berlin.
  • Katsube, T. J., and L. S. Collet (1974), Electromagnetic propagation characteristics of rocks, in The Physics and Chemistry of Minerals and Rocks, edited by R. G. J. Strens, pp. 279295, John Wiley, London.
  • Kirsch, R. (Ed.) (2006), Groundwater Geophysics, Springer, Berlin.
  • Lambot, S., M. Antoine, I. van den Bosch, E. C. Slob, and M. Vanclooster (2004), Electromagnetic inversion of GPR signals and subsequent hydrodynamic inversion to estimate effective vadose zone hydraulic properties, Vadose Zone J., 3, 10721081.
  • Laurent, J.-P. (2000), Profiling water content in soils by TDR: Experimental comparison with the neutron probe technique, IAEA-TECDOC-1137, Int. At. Energy Agency, Vienna.
  • Laurent, J.-P., P. Ruelle, L. Delage, A. Zaïri, B. Ben Nouna, and T. Adjmi (2005), Monitoring soil water content profiles with a commercial TDR system: Comparative field tests and laboratory calibration, Vadose Zone J., 4, 10301036, doi:10.2136/vzj2004.0144.
  • Leidenberger, P., B. Oswald, and K. Roth (2006), Efficient reconstruction of dispersive dielectric profiles using time domain reflectometry (TDR), Hydrol. Earth Syst. Sci., 10, 209232.
  • Li, A. G., Z. Q. Yue, L. G. Tham, C. F. Lee, and K. T. Law (2005), Field-monitored variations of soil moisture and matric suction in a saprolite slope, Can. Geotech. J., 42, 1326, doi:10.1139/t04-069.
  • Lichtenecker, K., and K. Rother (1931), Die Herleitung des logarithmischen Mischungsgesetzes aus allgemeinen Prinzipien der stationaeren Stroemung, Phys. Z., 32, 255260.
  • Logsdon, S. D. (2005), Soil dielectric spectra from vector network analyzer data, Soil Sci. Soc. Am. J., 69, 983989.
  • Long, D. S., J. M. Wraith, and G. Kegel (2002), A heavy-duty time domain reflectometry soil moisture probe for use in intensive field sampling, Soil Sci. Soc. Am. J., 66, 396401.
  • Lundstedt, J., and S. He (1996), A time-domain optimization technique for the simultaneous reconstruction of the characteristic impedance, resistance and conductance of a transmission line, J. Electromagn. Waves Appl., 10, 581602, doi:10.1163/156939396X01143.
  • Lundstedt, J., and M. Norgren (2003), Comparison between frequency domain and time domain methods for parameter reconstruction on nonuniform dispersive transmission lines, Prog. Electromagn. Res., 43, 137, doi:10.2528/PIER03020301.
  • Lundstedt, J., and S. Stroem (1996), Simultaneous reconstruction of two parameters from the transient response of a nonuniform LCRG transmission line, J. Electromagn. Waves Appl., 10, 1950, doi:10.1163/156939396X00199.
  • McCord, J. T., D. B. Stephens, and J. L. Wilson (1991), Hysteresis and state-dependent anisotropy in modeling unsaturated hillslope hydrologic processes, Water Resour. Res., 27, 15011518, doi:10.1029/91WR00880.
  • Norgren, M., and S. He (1996), An optimization approach to the frequency-domain inverse problem for a nonuniform LCRG transmission line, IEEE Trans. Microwave Theory Tech., 44, 15031507, doi:10.1109/22.536038.
  • Nyfors, E., and P. Vainikainen (1989), Industrial Microwave Sensors, Artech House, Norwood, Mass.
  • Oswald, B. (2000), Full wave solution of inverse electromagnetic problems, Ph.D. thesis, Swiss Fed. Inst. of Technol, Zurich, Switzerland.
  • Rahman, M., and R. Marklein (2005), Time-domain techniques for computation and reconstruction of one-dimensional profiles, Adv. Radio Sci., 3, 219225.
  • Regalado, C. (2006), A geometrical model of bound water permittivity based on weighted averages: The allophane analogue, J. Hydrol., 316, 98107, doi:10.1016/j.jhydrol.2005.04.014.
  • Robinson, D. A., S. B. Jones, J. M. Wraith, D. Or, and S. P. Friedman (2003), A review of advances in dielectric and electrical conductivity measurement in soils using time domain reflectometry, Vadose Zone J., 2, 444475.
  • Roth, C. H., M. A. Malicki, and R. Plagge (1992), Empirical evaluation of the relationship between soil dielectric constant and volumetric water content as the basis for calibrating soil moisture measurements by TDR, J. Soil Sci., 43, 113, doi:10.1111/j.1365-2389.1992.tb00115.x.
  • Roth, K., R. Schulin, H. Fluehler, and W. Attinger (1990), Calibration of time domain reflectometry for water content measurement using a composite dielectric approach, Water Resour. Res., 26, 22672273.
  • Rothe, A., W. Weis, K. Kreutzer, D. Matthies, U. Hess, and B. Ansorge (1997), Changes in soil structure caused by the installation of time domain reflectometry probes and their influence on the measurement of soil moisture, Water Resour. Res., 33, 15851593, doi:10.1029/97WR00677.
  • Schaedel, W. (2006), Schritte zur Verbesserung der Hochwasserfruehwarnung mittels Online-Bodenfeuchtemessungen, Ph.D. thesis, 186 pp., Inst. for Water and River Basin Manage., Univ. of Karlsruhe, Karlsruhe, Germany.
  • Scheuermann, A. (2005), Instationaere Durchfeuchtung quasi-homogener Erddeiche, Ph.D. thesis, 290 pp., Inst. for Soil Mech. and Rock Mech., Univ. of Karlsruhe, Karlsruhe, Germany.
  • Scheuermann, A. (2008), Water content dynamics in unsaturated soils—Results of experimental investigations in laboratory and in situ, in Unsaturated Soils: Advances in Geo-Engineering, edited by D.G. Toll, pp. 197204, Francis and Taylor, London.
  • Scheuermann, A., and A. Bieberstein (2006), Monitoring of dams and dikes—Water content determination using time domain reflectometry (TDR), in 13th Danube-European Conference on Geotechnical Engineering, edited by J. Logar et al., pp. 493498, Slovenian Geotech. Soc., Ljubljana, Slovenia.
  • Scheuermann, A., and A. Bieberstein (2007), Preferential water movement in homogeneous soils, in Experimental Unsaturated Soil Mechanics, Springer Proc. Phys., vol. 112, edited by T. Schanz, pp. 461473, Springer, Berlin.
  • Scheuermann, A., and C. Huebner (2009), On the feasibility of pressure profile measurement, IEEE Trans. Instrum. Meas., 58(2), 467474.
  • Scheuermann, A., S. Schlaeger, C. Huebner, A. Brandelik, and J. Brauns (2001), Monitoring of the spatial soil water distribution on a full-scale dike model, in Fourth International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, edited by K. Kupfer, and C. Huebner, pp. 343350, Mater. Res. and Testing Inst., Bauhaus Univ. Weimar, Weimar, Germany.
  • Scheuermann, A., S. Schlaeger, R. Becker, and A. Bieberstein (2005), Measurement of moisture content in a highly electrical lossy material using time domain reflectometry, in Sixth International Conference on Electromagnetic Wave Interaction With Water and Moist Substances, edited by K. Kupfer et al., pp. 166173, Mater. Res. and Testing Inst., Bauhaus Univ. Weimar, Weimar, Germany.
  • Scheuermann, A., A. Bieberstein, C. Huebner, R. Becker, and S. Schlaeger (2007), Monitoring von Altdeichstrecken—Instrumentierung eines 250 m langen Deichabschnittes mit TDR-Sensoren zur Bestimmung von Feuchteverteilungen, in Innovative Feuchtemessung in Forschung und Praxis 3, edited by F. Nestmann, pp. 8389, Aedificatio, Freiburg, Germany.
  • Scheuermann, A., A. Bieberstein, T. Triantafyllidis, C. Huebner, R. Becker, S. Schlaeger, and N. Wagner (2008), Spatial time domain reflectometry (spatial TDR)—On the use in geotechnics and geohydraulics, in Unsaturated Soils: Advances in Geo-Engineering, edited by D. G. Toll, pp. 189196, Francis and Taylor, London.
  • Schlaeger, S. (2002), Inversion von TDR-Messungen zur Rekonstruktion raeumlich verteilter bodenphysikalischer Parameter, Ph.D. thesis, 189 pp., Inst. for Soil Mech. and Rock Mech., Univ. of Karlsruhe, Karlsruhe, Germany.
  • Schlaeger, S. (2005), A fast TDR-inversion technique for the reconstruction of spatial soil moisture content, Hydrol. Earth Syst. Sci., 9, 481492.
  • Schofield, T. G. (2001), Long-term stability of time domain reflectometry measurements in a multi-year field experiment, paper presented at Second International Symposium and Workshop on Time Domain Reflectometry for Innovative Geotechnical Applications, Northwestern Univ., Evanston, Ill., 5 – 7 Sept.
  • Serbin, G., and D. Or (2003), Near-surface soil water content measurements using horn antenna radar: Methodology and overview, Vadose Zone J., 2, 500510.
  • Shen, L., H. Marouni, Y. Zhang, and X. Shi (1987), Analysis of the parallel-disk sample holder for dielectric permittivity measurement, IEEE Trans. Geosci. Remote Sens., 25, 534540, doi:10.1109/TGRS.1987.289831.
  • Sihvola, A. (2000), Electromagnetic Mixing Formulae and Applications, IEE Electromagn. Waves Ser., vol. 47, Inst. of Eng. and Technol., Stevenage, U.K.
  • Stacheder, M. (1996), Die Time Domain Reflectometry in der Geotechnik—Messungen von Wassergehalt, elektrischer Leitfaehigkeit und Strofftransport, Ph.D. thesis, 170 pp., Inst. for Appl. Geol., Univ. of Karlsruhe, Karlsruhe, Germany.
  • Stacheder, M., C. Huebner, S. Schlaeger, and A. Brandelik (2005), Combined TDR and low frequency permittivity measurements for continuous snow wetness and snow density determination, in Electromagnetic Aquametry, edited by K. Kupfer, pp. 367382, Springer, Berlin.
  • Stenger, R., T. Woehling, G. Barkle, and A. Wall (2007), Relationship between dielectric permittivity and water content for vadose zone materials of volcanic origin, Aust. J. Soil Res., 45, 299309, doi:10.1071/SR06172.
  • Todoroff, P., and J.-D. Lan Sun Luk (2001), Calculation of in situ soil water content profiles from TDR signal traces, Meas. Sci. Technol., 12, 2736, doi:10.1088/0957-0233/12/1/304.
  • Topp, G. C., J. L. Davis, and A. Annan (1980), Electromagnetic determination of soil water content: Measurement in coaxial transmission lines, Water Resour. Res., 16, 574582, doi:10.1029/WR016i003p00574.
  • Topp, G. G., J. L. Davis, and A. P. Annan (1982), Electromagnetic determination of soil water content using TDR: I. Applications to wetting fronts and steep gradients, Soil Sci. Soc. Am. J., 46, 672678.
  • Vereecken, H., R. Kasteel, J. Vanderborght, and T. Harter (2007), Upscaling hydraulic properties and soil water flow processes in heterogeneous soils: A review, Vadose Zone J., 6, 128, doi:10.2136/vzj2006.0055.
  • Wagner, N., E. Trinks, and K. Kupfer (2007a), Determination of the spatial TDR-sensor characteristics in strong dispersive subsoil using 3D-FEM frequency domain simulations in combination with microwave dielectric spectroscopy, Meas. Sci. Technol., 18, 11371146, doi:10.1088/0957-0233/18/4/022.
  • Wagner, N., K. Kupfer, and E. Trinks (2007b), A broadband dielectric spectroscopy study of the relaxation behaviour of subsoil, in Seventh International Conference on Electromagnetic Wave Interaction with Water and Moist Substances, edited by S. Okamura et al., pp. 3138, Shizuoka Univ., Hamamatsu, Japan.
  • Wagner, N., K. Kupfer, and E. Trinks (2007c), Electromagnetic material properties of moist soil determined by broadband dielectric spectroscopy, in Innovative Feuchtemessung in Forschung und Praxis 3, edited by F. Nestmann, pp. 3745, Aedificatio, Freiburg, Germany.
  • Wang, J., and T. Schmugge (1980), An empirical model for the complex dielectric permittivity of soils as a function of water content, IEEE Trans. Geosci. Remote Sens., 18, 288295, doi:10.1109/TGRS.1980.350304.
  • Whalley, W. R. (1993), Considerations on the use of time-domain reflectometry (TDR) for measuring soil water content, Eur. J. Soil Sci., 44, 19, doi:10.1111/j.1365-2389.1993.tb00429.x.
  • Woersching, H., R. Becker, S. Schlaeger, A. Bieberstein, and P. Kudella (2006), Spatial TDR moisture measurement in a large scale levee model made of loamy soil material, paper presented at TDR 2006, Purdue Univ., West Lafayette, Indiana. (Available at https://engineering.purdue.edu/TDR/Papers).