• Brooks, R., and T. Corey (1964), Hydraulic properties of porous media, Tech. Rep. 3, Civ. Eng. Dep., Colo. State Univ., Fort Collins, Colo.
  • Burgers, G., P. V. Leeuwen, and G. Evensen (1998), Analysis scheme in the ensemble Kalman filter, Mon. Weather Rev., 126, 17191724.
  • Chui, C., and G. Chen (1991), Kalman Filtering With Real Time Applications, 2nd ed., Springer, New York.
  • Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics, J. Geophys. Res., 99, 10,14310,162.
  • Evensen, G. (2003), The ensemble Kalman filter: Theoretical formulation and practical implementation, Ocean Dyn., 53, 343367.
  • Gao, G., M. Zafari, and A. Reynolds (2006), Quantifying the uncertainty for the PUNQ-S3 problem in a Bayesian setting with RML and EnKF, SPE J., 11(4), 506515.
  • Ghanem, R. (1999), The nonlinear Gaussian spectrum of log-normal stochastic processes and variables, J. Appl. Mech., 66(4), 964973.
  • Ghanem, R., and S. Dham (1998), Stochastic finite element analysis for multiphase flow in heterogeneous porous media, Transp. Porous Media, 32(3), 239262.
  • Ghanem, R. G., and P. D. Spanos (2003), Stochastic Finite Elements: A Spectral Approach, revised edition, Dover, Mineola, New York.
  • Gu, Y., and D. Oliver (2005), History matching of the PUNQ-S3 reservoir model using the ensemble Kalman filter, SPE J., 10(2), 217224.
  • Hatoum, S. (1998), A computational model for the analysis of multiphase flow in random porous media, Ph.D. thesis, State Univ. of N. Y. at Buffalo, Buffalo.
  • Houtekamer, P., and H. Mitchell (1998), Data assimilation using an ensemble Kalman filter technique, Mon. Weather Rev., 126, 796811.
  • Kalman, R. (1960), A new approach to linear filtering and perdiction problems, J. Basic Eng., Ser. D, 82, 3545.
  • Liu, N., and D. Oliver (2005), Critical evaluation of the ensemble Kalman filter on history matching of geologic facies, SPE Reservoir Eval. Eng., 8(6), 470477.
  • Loeve, M. (1977), Probability Theory, 4th ed., Springer, New York.
  • Long, K. (2004), Sundance 2.0 tutorial, technical report, Sandia Natl. Lab., Albuquerque, N. M.
  • Marzouk, Y., H. Najm, and L. Rahn (2007), Stochastic spectral methods for efficient Bayesian solution of inverse problems, J. Comput. Phys., 224(2), 560586.
  • Muskat, M. (1949), Physical Principles of Oil Production, McGraw Hill, New York.
  • Naevdal, G., L. Johnsen, S. Aanonsen, and E. Vefring (2003), Reservoir monitoring and continuous model updating using the ensemble Kalman filter, paper presented at Annual Technical Conference and Exhibition, Soc. of Pet. Eng., Denver, Colo.
  • Rupert, C., and C. Miller (2007), An analysis of polynomial chaos approximations for modeling single-fluid-phase flow in porous medium systems, J. Comput. Phys., 226, 21752205.
  • Soize, C., and R. Ghanem (2004), Physical systems with random uncertainties: Chaos representations with arbitrary probability measure, SIAM J. Sci. Comput., 26(2), 395410.
  • Wiener, N. (1938), The homogeneous chaos, Am. J. Math., 60, 897936.
  • Zhou, Y., D. McLaughlin, and D. Entekhabi (2006), Assessing the performance of the ensemble Kalman filter for land surface data assimilation, Mon. Weather Rev., 134, 21282142.