SEARCH

SEARCH BY CITATION

Keywords:

  • aerosol

[1] Six Mays from 2001 to 2006 of aerosol optical depth from the Multiangle Imaging SpectroRadiometer and short- and longwave flux from the Clouds and Earth's Radiant Energy Budget Scanner are combined to estimate radiative forcing of dust aerosols in the Taklimakan Desert (75°E–95°E, 36°N–42°N, elevation < 1600 m). The cloud-free dust shortwave versus longwave forcing per aerosol optical depth at about 05:00 UTC are −48.1 and 28.4 W m−2, respectively. Dust longwave warming offsets 58% of dust shortwave cooling and the overall dust radiative effect is to cool the Earth system. Annual shortwave and longwave forcing efficiencies vary from 26.7 to 63.8 and 18.3 to 39.3 W m−2, respectively, due to changes in surface properties. Radiative transfer model simulations also suggest Earth's system is cooled in the shortwave but warmed in the longwave by Taklimakan dust aerosols.