SEARCH

SEARCH BY CITATION

References

  • Amsden, A. A., H. M. Ruppel, and C. W. Hirt (1980), SALE: A simplified ALE computer program for fluid flows at all speeds, Rep. LA-8095, Los Alamos Natl. Lab., Los Alamos, N. M.
  • Anderson, C. E.Jr. (1987), An overview of the theory of hydrocodes, Int. J. Impact Eng., 5, 3359.
  • Benson, D. J. (1992), Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Meteorol. Appl. Mech. Eng., 99, 235394.
  • Benson, D. J. (2002), Volume of fluid interface reconstruction methods for multi-material problems, Appl. Mech. Rev., 55, 151165.
  • Collins, G. S., H. J. Melosh, and B. A. Ivanov (2004), Modeling damage and deformation in impact simulations, Meteorit. Planet. Sci., 39, 217231.
  • Fritz, H. M. (2002), Initial phase of landslide generated impulse waves. Ph.D. thesis ETH-No. 14871, Swiss Federal Institute of Technology, ETH, Zürich, Switzerland.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2001), Lituya Bay case: Rockslide impact and wave runup, Sci. Tsunami Hazards, 19, 322.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2003), Landslide generated impulse waves: Part 1. Instantaneous flow fields, Exp. Fluids, 35, 505519.
  • Fritz, H. M., W. H. Hager, and H.-E. Minor (2004), Near field characteristics of landslide generated impulse waves, J. Waterw. Port Coastal Ocean Eng., 130, 287302.
  • Fritz, H. M., F. Mohammed, and J. Yoo (2009), Lituya Bay landslide impact generated mega-tsunami 50th anniversary, Pure Appl. Geophys., 166, 153175, doi:10.1007/s00024-008-0435-4.
  • Hall, J. V.Jr., and G. M. Watts (1953), Laboratory investigation of the vertical rise of solitary waves on impermeable slopes, Tech. Memo. 33, U.S. Army Corps of Eng., Washington, D. C.
  • Ivanov, B. A., D. Deniem, and G. Neukum (1997), Implementation of dynamic strength models into 2D hydrocodes: Applications for atmospheric breakup and impact cratering, Int. J. Impact Eng., 20, 411430.
  • Jensen, A., G. K. Pedersen, and D. J. Wood (2003), An experimental study of wave runup at a steep beach, J. Fluid Mech., 486, 161188, doi:10.1017/S0022112003004543.
  • Law, L., and A. Brebner (1968), On water waves generated by landslides, in Proceedings of the Third Australasian Conference on Hydraulics and Fluid Mechanics, pp. 155159, Inst. of Eng., Sydney, N. S. W., Australia.
  • Melosh, H. J. (1989), Impact Cratering: A Geologic Process, Oxford Monogr. Geol. Geophys., vol. 11, Oxford Univ. Press, New York.
  • Miller, D. J. (1960), Giant waves in Lituya Bay, Alaska, U. S. Geol. Surv. Prof. Pap. 354-C.
  • Müller, L. (1964), The rock slide in the Vajont Valley, Rock Mech. Eng. Geol., 2, 148212.
  • Müller, L. (1968), New considerations on the Vajont slide, Rock Mech. Eng. Geol., 6, 191.
  • Noda, E. (1970), Water waves generated by landslides, J. Waterw. Harbors Coastal Eng. Div. Am. Soc. Civ. Eng., 96, 835855.
  • Plafker, G. (1969), Tectonics of the March 27, 1964, Alaska earthquake, U. S. Geol. Surv. Prof. Pap. 543-I.
  • Pierazzo, E., and G. S. Collins (2004), A brief introduction to hydrocode modelling of impact cratering, in Impact Studies: Cratering in Marine Environments and on Ice, edited by D. Henning et al., p. 323, Springer, New York.
  • Pierazzo, E., et al. (2008), Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets, Meteorit. Planet. Sci., 43, 19171939.
  • Slingerland, R. L., and B. Voight (1979), Occurrences, properties and predictive models of landslide-generated impulse waves, in Rockslides and Avalanches, Dev. Geotech. Eng., vol. 14A–14B, edited by B. Voight, p. 317, Elsevier, Amsterdam.
  • Synolakis, C. E. (1986), The runup of long waves, Ph.D. thesis, Calif. Inst. of Technol, Pasadena.
  • Synolakis, C. E. (1987), The runup of solitary waves, J. Fluid Mech., 185, 523545.
  • Synolakis, C. E., A. C. Yalciner, J. C. Borrero, and G. Plafker (2002), Modeling of the November 3, 1994 Skagway, Alaska tsunami, in Solutions to Coastal Disasters 2008 Tsunamis, edited by L. Wallendorf, and L. Ewing, pp. 915927, Am. Soc. of Civ. Eng., Reston, Va.
  • Tanaka, M. (1986), The stability of Solitary waves, Phys. Fluids, 29, 650655.
  • Tillotson, J. H. (1962), Metallic equations of state for hypervelocity impacts, Gen. At. Rep. GA-3216, Gen. At. Div. of Gen. Dyn., San Diego, Calif.
  • Tocher, D., and D. J. Miller (1959), Field observations on effects of Alaskan earthquake of 10 July, 1958, Science, 129, 394395.
  • Voight, B., H. Glicken, R. J. Janda, and P. M. Douglass (1981), Catastrophic rockslide-avalanche of May 18: The 1980 eruptions of Mount St. Helens, Washington, edited by P. W. Lipman, and D. R. Mullineaux, U. S. Geol. Surv. Prof. Pap., vol. 1250, pp. 347377.
  • Voight, B., R. J. Janda, H. Glicken, and P. M. Douglass (1983), Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 May 1980, Géotechnique, 33, 243273.
  • Weiss, R., K. Wünnemann, and H. Bahlburg (2006), Numerical modelling of generation, propagation and run-up of tsunamis caused by oceanic impacts: Model strategy and technical solutions, Geophys. J. Int., 167, 7788.
  • Wünnemann, K., and M. A. Lange (2002), Numerical modeling of impact-induced modifications of the deep-sea floor, Deep Sea Res., Part II, 49, 669981.
  • Wünnemann, K., G. S. Collins, and H. J. Melosh (2006), A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets, Icarus, 180, 514527.
  • Wünnemann, K., R. Weiss, and K. Hofmann (2007), Characteristic of oceanic impact induced large water waves–reevaluation of the tsunami hazard, Meteorit. Planet. Sci., 42, 18931903.