Geophysical Research Letters

Seismic signals of snow-slurry lahars in motion: 25 September 2007, Mt Ruapehu, New Zealand

Authors


Abstract

[1] Detection of ground shaking forms the basis of many lahar-warning systems. Seismic records of two lahar types at Ruapehu, New Zealand, in 2007 are used to examine their nature and internal dynamics. Upstream detection of a flow depends upon flow type and coupling with the ground. 3-D characteristics of seismic signals can be used to distinguish the dominant rheology and gross physical composition. Water-rich hyperconcentrated flows are turbulent; common inter-particle and particle-substrate collisions engender higher energy in cross-channel vibrations relative to channel-parallel. Plug-like snow-slurry lahars show greater energy in channel-parallel signals, due to lateral deposition insulating channel margins, and low turbulence. Direct comparison of flow size must account for flow rheology; a water-rich lahar will generate signals of greater amplitude than a similar-sized snow-slurry flow.

Ancillary