• Allen, M., et al. (2006), Observational constraints on climate sensitivity, in Avoiding Dangerous Climate Change, edited by H. J. Schellnhuber et al., pp. 281289, Cambridge Univ. Press, New York.
  • Ammann, C. M., G. A. Meehl, W. M. Washington, and C. S. Zender (2003), A monthly and latitudinally varying volcanic forcing dataset in simulations of 20th century climate, Geophys. Res. Lett., 30(12), 1657, doi:10.1029/2003GL016875.
  • Andronova, N. G., and M. E. Schlesinger (2001), Objective estimation of the probability density function for climate sensitivity, J. Geophys. Res., 106, 22,60522,611, doi:10.1029/2000JD000259.
  • Drud, A. (2006), CONOPT, 45 pp., ARKI Consult. and Dev., Bagsvaerd, Denmark.
  • Forest, C. E., P. H. Stone, and A. P. Sokolov (2006), Estimated PDFs of climate system properties including natural and anthropogenic forcings, Geophys. Res. Lett., 33, L01705, doi:10.1029/2005GL023977.
  • Gregory, J. M., R. J. Stouffer, S. C. B. Raper, P. A. Stott, and N. A. Rayner (2002), An observationally based estimate of the climate sensitivity, J. Clim., 15, 31173121, doi:10.1175/1520-0442(2002)015<3117:AOBEOT>2.0.CO;2.
  • Hegerl, G. C., T. J. Crowley, W. T. Hyde, and D. J. Frame (2006), Climate sensitivity constrained by temperature reconstructions over the past seven centuries, Nature, 440, 10291032, doi:10.1038/nature04679.
  • Hooss, G., R. Voss, K. Hasselmann, E. Maier-Reimer, and F. Joos (2001), A nonlinear impulse response model of the coupled carbon cycle-climate system (NICCS), Clim. Dyn., 18, 189202, doi:10.1007/s003820100170.
  • Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
  • Jones, P. D., K. R. Briffa, T. P. Barnett, and S. F. B. Tett (1998), Millennial temperature reconstructions, IGBP PAGES/World Data Cent.-A Paleoclimatol. Data Contrib. Ser. 1998-039, NGDC Paleoclimatol. Program, NOAA, Boulder, Colo.
  • Jones, P. D., D. E. Parker, T. J. Osborn, and K. R. Briffa (2006), Global and hemispheric temperature anomalies—Land and marine instrumental records, in Trends: A Compendium of Data on Global Change,, Carbon Dioxide Inf. Anal. Cent., Oak Ridge Natl. Lab., Oak Ridge, Tenn.
  • Joos, F., M. Bruno, R. Fink, U. Siegenthaler, and T. F. Stocker (1996), An efficient and accurate representation of complex oceanic and biospheric models of anthropogenic carbon uptake, Tellus, Ser. B, 48, 397417, doi:10.1034/j.1600-0889.1996.t01-2-00006.x.
    Direct Link:
  • Joos, F., C. Prentice, S. Sitch, R. Meyer, G. Hooss, G.-K. Plattner, S. Gerber, and K. Hasselmann (2001), Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios, Global Biogeochem. Cycles, 15, 891907, doi:10.1029/2000GB001375.
  • Knutti, R., T. F. Stocker, F. Joos, and G.-K. Plattner (2002), Constraints on radiative forcing and future climate change from observations and climate model ensembles, Nature, 416, 719723, doi:10.1038/416719a.
  • Kriegler, E. (2005), Imprecise probability analysis for integrated assessment of climate change, Ph.D. dissertation, 256 pp., Potsdam Univ., Potsdam, Germany. (Available at
  • Krivova, N. A., L. Balmaceda, and S. K. Solanki (2007), Reconstruction of solar total irradiance since 1700 from the surface magnetic flux, Astron. Astrophys., 467, 335346, doi:10.1051/0004-6361:20066725.
  • Mann, M. E., and P. D. Jones (2003), Global surface temperatures over the past two millennia, Geophys. Res. Lett., 30(15), 1820, doi:10.1029/2003GL017814.
  • Meinshausen, M., N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen (2009), Greenhouse-gas emission targets for limiting global warming to 2°C, Nature, 458, 11581162, doi:10.1038/nature08017.
  • Murphy, J. M., D. M. H. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, and D. A. Stainforth (2004), Quantification of modelling uncertainties in a large ensemble of climate change simulation, Nature, 430, 768772, doi:10.1038/nature02771.
  • Prather, M. J., et al. (2009), Tracking uncertainties in the casual chain from human activities to climate, Geophys. Res. Lett., 36, L05707, doi:10.1029/2008GL036474.
  • Roe, G. H., and M. B. Baker (2007), Why is climate sensitivity so unpredictable? Science, 318, 629632, doi:10.1126/science.1144735.
  • Stainforth, D. A., et al. (2005), Uncertainty in predictions of the climate response to rising levels of greenhouse gases, Nature, 433, 403406, doi:10.1038/nature03301.
  • Tanaka, K. (2008), Inverse estimation for the simple Earth system model ACC2 and its applications, Ph.D. dissertation, 296 pp., Int. Max Planck Res. Sch. on Earth Syst. Modell., Hamburg Univ., Hamburg, Germany. (Available at
  • Tanaka, K., E. Kriegler, T. Bruckner, G. Hooss, W. Knorr, and T. Raddatz (2007), Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2): Description of the forward and inverse modes, Rep. Earth Syst. Sci. 40, 188 pp., Max Planck Inst. for Meteorol., Hamburg, Germany. (Available at
  • Tanaka, K., B. C. O'Neill, D. Rokityanskiy, M. Obersteiner, and R. S. J. Tol (2009), Evaluating Global Warming Potentials with historical temperature, Clim. Change, doi:10.1007/s10584-009-9566-6.
  • Tarantola, A. (2005), Inverse problem theory and methods for model parameter estimation, 342 pp., Soc. for Ind. and Appl. Math., Philadelphia, Pa. (Available at∼tarantola/).