• climate change;
  • global warming;
  • precipitation

[1] Data from the Global Precipitation Climatology Project (GPCP) covering the period 1979–2007 are examined for changes of precipitation extremes as a function of global mean temperature by using a new method which focuses on interannual differences rather than time series. We find that the top 10% bin of precipitation intensity increases by about 95% for each degree Kelvin (K) increase in global mean temperature, while 30%–60% bins decrease by about 20% K−1. The global average precipitation intensity increases by about 23% K−1, substantially greater than the increase of about 7% K−1 in atmospheric water-holding capacity estimated by the Clausius-Clapeyron equation. The large increase of precipitation intensity is qualitatively consistent with the hypothesis that the precipitation intensity should increase by more than 7% K−1 because of the additional latent heat released from the increased moisture. Our results also provide an independent evidence in support for significant increases in the number and/or size of strong global tropical cyclones. However an ensemble of 17 latest generation climate models estimates an increase of only about 2% K−1 in precipitation intensity, about one order of magnitude smaller than our value, suggesting that the risk of extreme precipitation events due to global warming is substantially greater than that estimated by the climate models.