SEARCH

SEARCH BY CITATION

References

  • Adcroft, A., C. Hill, and J. Marshall (1997), Representation of topography by shaved cells in a height coordinate ocean model, Mon. Weather Rev., 125, 22932315.
  • Allen, S. E. (2000), On subinertial flow in submarine canyons: Effect of geometry, J. Geophys. Res., 105, 12851297.
  • Allen, S. E. (2004), Restrictions on deep flow across the shelf-break and the role of submarine canyons in facilitating such flow, Surv. Geophys., 25, 221247.
  • Allen, S. E., C. Vindeirinho, R. E. Thomson, M. G. G. Foreman, and D. L. Mackas (2001), Physical and biological processes over a submarine canyon during an upwelling event, Can. J. Fish. Aquat. Sci., 58, 671684, doi:10.1139/cjfas-58-4-671.
  • Allen, S. E., M. S. Dinniman, J. M. Klinck, D. D. Gorby, A. J. Hewett, and B. M. Hickey (2003), On vertical advection truncation errors in terrain-following numerical models: Comparison to a laboratory model for upwelling over submarine canyons, J. Geophys. Res., 108(C1), 3003, doi:10.1029/2001JC000978.
  • Bosley, K. L., J. W. Lavelle, R. D. Brodeur, W. W. Wakefield, R. L. Emmett, E. T. Baker, and K. M. Rehmke (2004), Biological and physical processes in and around Astoria submarine canyon, Oregon, USA, J. Mar. Syst., 50, 2137.
  • Bowie, A. W. (2006), Upwelling in short submarine canyons: A physical study, M.S. thesis, Univ. of B. C., Vancouver, B. C., Canada.
  • Boyer, D. L., X. Zhang, and N. Pérenne (2000), Laboratory observations of rotating, stratified flow in the vicinity of a submarine canyon, Dyn. Atmos. Oceans, 31, 4772.
  • Boyer, D. L., D. B. Haidvogel, and N. Pérenne (2004), Laboratory-numerical model comparisons of canyon flows: A parameter study, J. Phys. Oceanogr., 34, 15881609.
  • Boyer, D. L., J. Sommeria, A. S. Mitrovic, V. K. C. Pakala, S. A. Smirnov, and D. Etling (2006), The effects of boundary turbulence on canyon flows forced by periodic along-shelf currents, J. Phys. Oceanogr., 26, 813826.
  • Freeland, H., and K. Denman (1982), A topographically controlled upwelling center off Vancouver Island, J. Mar. Res., 40, 10691093.
  • Haidvogel, D. B. (2005), Cross-shelf exchange driven by oscillatory barotropic currents at an idealized coastal canyon, J. Phys. Oceanogr., 35, 10551067.
  • Hickey, B. M. (1997), The response of a steep-sided, narrow canyon to time-variable wind forcing, J. Phys. Oceanogr., 27, 697726.
  • Hill, D. F. (2002), General density gradients in general domains: The “two-tank” method revisited, Exp. Fluids, 32, 434440.
  • Jaramillo, S. (2005), Numerical simulation of flow in a laboratory tank using a z-coordinate numerical model, M.S. thesis, Univ. of B. C., Vancouver, B. C., Canada.
  • Klinck, J. M. (1996), Circulation near submarine canyons: A modeling study, J. Geophys. Res., 101, 12111223.
  • Kundu, P. K. (1990), Fluid Mechanics, 638 pp., Academic, San Diego, Calif.
  • Kunze, E., and S. G. L. Smith (2004), The role of small-scale topography in turbulent mixing of the global ocean, Oceanography, 17(1), 5564.
  • Ladd, C., P. Stabeno, and E. D. Cokelet (2005), A note on cross-shelf exchange in the northern Gulf of Alaska, Deep Sea Res., Part II, 52, 667679.
  • Laurent, L. S., S. Stringer, C. Garrett, and D. Perrault-Joncas (2003), The generation of internal tides at abrupt topography, Deep Sea Res., Part I, 50, 9871003.
  • MacCready, P., and P. B. Rhines (1993), Slippery bottom boundary layers on a slope, J. Phys. Oceanogr., 23, 522.
  • Marshall, J., A. Adcroft, C. Hill, L. Perelman, and C. Heisey (1997), A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, 57535766.
  • Mirshak, R., and S. E. Allen (2005), Spin-up and the effect of a submarine canyon: Applications to upwelling in Astoria Canyon, J. Geophys. Res., 110, C02013, doi:10.1029/2004JC002578.
  • Oster, G. (1965), Density gradients, Sci. Am., 213(2), 7076.
  • Palanques, A., et al. (2005), General patterns of circulation, sediment fluxes and ecology of the Palamós (La Fonera) submarine canyon, northwestern Mediterranean, Prog. Oceanogr., 66, 89119.
  • Pérenne, N., J. Verron, D. Renouard, D. L. Boyer, and X. Zhang (1997), Rectified barotropic flow over a submarine canyon, J. Phys. Oceanogr., 27, 18681893.
  • Pérenne, N., D. B. Haidvogel, and D. L. Boyer (2001a), Laboratory-numerical model comparisons of flow over a coastal canyon, J. Atmos. Oceanic Technol., 18, 235255.
  • Pérenne, N., J. W. Lavelle, D. C. Smith IV, and D. L. Boyer (2001b), Impulsively started flow in a submarine canyon: Comparison of results from laboratory and numerical models, J. Atmos. Oceanic Technol., 18, 16981718.
  • Sobarzo, M., M. Figueroa, and L. Djurfeldt (2001), Upwelling of subsurface water into the rim of the Biobío submarine canyon as a response to surface winds, Cont. Shelf Res., 21, 279299.
  • Song, Y., and D. B. Haidvogel (1994), A semi-implicit ocean circulation model using a generalized topography-following coordinate system, J. Comput. Phys., 115, 228244.
  • Thorpe, S. A. (1987), Current and temperature variability on the continental slope, Philos. Trans. R. Soc. London, Ser. A, 323(1574), 471517.
  • Wang, D.-P., L.-Y. Oey, T. Ezer, and P. Hamilton (2003), Near-surface currents in DeSoto Canyon (1997–99): Comparison of current meters, satellite observation, and model simulation, J. Phys. Oceanogr., 33, 313326.
  • Waterhouse, A. F. (2006), A physical study of upwelling flow dynamics in long canyons, M.S. thesis, Univ. of B. C., Vancouver, B. C., Canada.
  • Waterhouse, A. F., S. E. Allen, and A. W. Bowie (2009), Upwelling flow dynamics in long canyons at low Rossby number, J. Geophys. Res., 114, C05004, doi:10.1029/2008JC004956.
  • Williams, W. J., E. C. Carmack, K. Shimada, H. Melling, K. Aagaard, R. W. Macdonald, and R. G. Ingram (2006), Joint effects of wind and ice motion in forcing upwelling in Mackenzie Trough, Beaufort Sea, Cont. Shelf Res., 26, 23522366.