Divergence in seasonal hydrology across northern Eurasia: Emerging trends and water cycle linkages

Authors


Abstract

[1] Discharge from large Eurasia rivers increased during the 20th century, yet much remains unknown regarding details of this increasing freshwater flux. Here, for the three largest Eurasian basins (the Ob, Yenisei, and Lena) we examine the nature of annual and seasonal discharge trends by investigating the flow changes along with those for precipitation, snow depth, and snow water equivalent. On the basis of a multiperiod trend analysis and examination of station data, we propose two characteristic regimes to explain the long-term discharge increase from these large Eurasian rivers. Over the early decades from approximately 1936 to 1965, annual precipitation correlates well with annual discharge, and positive discharge trends are concurrent with summer/fall discharge increases. The latter decades were marked by a divergence between winter/spring flows, which increased, amid summer/fall discharge declines. A comparison of cold season precipitation (CSP) and spring discharge trends across subbasins of the Ob, Yenisei, and Lena shows limited agreement with one precipitation data set but good agreement (R2 > 0.90) when a second is used. While natural variability in the Arctic system tends to mask these emerging trends, spatial and temporal changes can generally be characterized by increased solid precipitation, primarily to the north, along with a drier hydrography during the warm season.

Ancillary