SEARCH

SEARCH BY CITATION

References

  • Abry, P., P. Flandrin, M. S. Taqqu, and D. Veitch (2003), Self-similarity and long range dependence through the wavelet lens, in Theory and Applications of Long Range Dependence, edited by O. G. Doukhan, and M. S. Taqqu, pp. 527556, Birkhuser, Basel.
  • Barbosa, S. M., M. J. Fernandes, and M. E. Silva (2006a), Long range dependence in North Atlantic sea level, Physica A, 371, 725731.
  • Barbosa, S. M., M. E. Silva, and M. J. Fernandes (2006b), Wavelet analysis of the Lisbon and Gibraltar North Atlantic Oscillation winter indices, Int. J. Climatol., 26, 581593.
  • Barbosa, S. M., M. E. Silva, and M. J. Fernandes (2008), Time series analysis of sea-level records: Characterising long-term variability, in Nonlinear Time Series Analysis in the Geosciences—Applications in Climatology, Geodynamics, and Solar-Terrestrial Physics, edited by R. V. Donner, and S. M. Barbosa, pp. 157173, Springer, Berlin.
  • Benjamini, Y., and D. Yekutieli (2001), The control of the false discovery rate in multiple testing under dependency, Ann. Stat., 29(4), 11651188.
  • Beran, J. (1994), Statistic for Long-Memory Processes, Chapman and Hall, New York.
  • Bras, R. L., and I. Rodriguez-Iturbe (1994), Random Function and Hydrology, vol. 21, Dover, New York.
  • Brunetti, M., M. Colacino, M. Maugeri, and T. Nanni (2001), Trends in the daily intensity of precipitation in Italy from 1951 to 1996, Int. J. Climatol., 21, 299316.
  • Buhlmann, P. (2002), Bootstrap for time series, Stat. Sci., 17(1), 5272.
  • Burn, D., A. Mohamed, and H. Elnur (2002), Detection of hydrologic trends and variability, J. Hydrol., 255, 107122.
  • Caballero, R., S. Jewson, and A. Brix (2002), Long memory in surface air temperature: Detection, modeling, and application to weather derivative valuation, Clim. Res., 21, 127140.
  • Cairncross, A. (1971), Essays in Economic Management, Allen and Unwin, London.
  • Cleveland, R. B., W. S. Cleveland, J. E. McRae, and I. Terpenning (1990), STL: A seasonal-trend decomposition procedure based on loess, J. Off. Stat., 6, 373.
  • Cohn, T. A., and H. F. Lins (2005), Nature's style: Naturally trendy, Geophys. Res. Lett., 32, L23402, doi:10.1029/2005GL024476.
  • Conover, W. J. (1999), Practical Nonparametric Statistics, 3rd ed., John Wiley, New York.
  • Cox, D. R., and A. Stuart (1955), Some quick tests for trend in location and dispersion, Biometrika, 42, 8095.
  • Daniels, H. E. (1950), Rank correlation and population models, J. R. Stat. Soc. Ser. B, 12, 171181.
  • Davison, A. C., and D. V. Hinkley (1997), Bootstrap Methods and Their Application, Cambridge Univ. Press, New York.
  • Diebolt, C., and V. Guiraud (2005), A note on long memory time series, Qual. Quant., 39, 827836, doi:10.1007/s11135-004-0436-z.
  • Doukhan, P., G. Oppenheim, and M. S. Taqqu (2003), Theory and Applications of Long-Range Dependence, Birkhuser, Basel.
  • Franco, G. C., and V. A. Reisen (2004), Bootstrap techniques in semiparametric estimation methods for ARFIMA models: A comparison study, Comput. Stat., 19, 243259.
  • Franco, G. C., and V. A. Reisen (2007), Bootstrap approaches and confidence intervals for stationary and non-stationary long-range dependence processes, Physica A, 375, 546562, doi:10.1016/j.physa.2006.08.027.
  • Geweke, J., and S. Porter-Hudak (1983), The estimation and application of long memory time series models, J. Time Ser. Anal., 4, 221238.
  • Granger, C. W. J., and R. Joyeux (1980), An introduction to long-range time series models and fractional differencing, J. Time Ser. Anal., 1, 1530.
  • Grimaldi, S. (2004), Linear parametric models applied to daily hydrological series, J. Hydrol. Eng., 9(5), 383391.
  • Groisman, P. Y., R. W. Knight, T. R. Karl, D. R. Easterling, B. Sun, and J. H. Lawrimore (2004), Contemporary changes of the hydrological cycle over the contiguous United States: Trends derived from in situ observations, J. Hydrometeorol., 5(1), 6485.
  • Hamed, K. H. (2008), Trend detection in hydrologic data: The Mann-Kendall trend test under scaling hypothesis, J. Hydrol., 349, 350363, doi:10.1016/j.jhydrol.2007.11.009.
  • Hamed, K. H., and A. R. Rao (1998), A modified Mann-Kendall trend test for autocorrelated data, J. Hydrol., 204, 182196.
  • Härdle, W., J. Horowit, and J.-P. Kreiss (2003), Bootstrap methods for time series, Int. Stat. Rev., 71(2), 435459.
  • Haslett, J., and A. E. Raftery (1989), Space-time modelling with long-memory dependence: Assessing Ireland's wind power resource (with discussion), Appl. Stat., 38(1), 150.
  • Hosking, J. R. M. (1981), Fractional differencing, Biometrika, 68, 165176.
  • Hu, K., I. P. Ch., Z. Chen, P. Carpena, and H. E. Stanley (2001), Effects of trends on detrended fluctuation analysis, Phys. Rev. E, 64, 011114, doi:10.1103/PhysRevE.64.011114.
  • Hurst, H. E. (1951), Long-term storage capacity of reservoirs, Trans. Am. Soc. Civ. Eng., 116, 770779.
  • Intergovernmental Panel on Climate Change (IPCC) (2007), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge Univ. Press, New York.
  • Jach, A., and P. Kokoszka (2008), Wavelet-domain test for long-range dependence in the presence of a trend, Statistics, 42, 101113.
  • Kallache, M., H. W. Rust, and J. Kropp (2005), Trend assessment: Applications for hydrology and climate research, Nonlinear Process. Geophys., 12, 201210.
  • Kendall, M. G. (1975), Rank Correlation Methods, Griffin, London.
  • Khaliq, M. N., T. B. M. J. Ouarda, P. Gachon, L. Sushama, and A. St-Hilaire (2009), Identification of hydrological trends in the presence of serial and cross correlations: A review of selected methods and their application to annual flow regimes of Canadian rivers, J. Hydrol., 368, 117130, doi:10.1016/j.jhydrol.2009.01.035.
  • Kiràly, A., and I. M. Janosi (2005), Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia, Meteorol. Atmos. Phys., 88, 119128.
  • Klemeš, V. (1974), The Hurst phenomenon—A puzzle? Water Resour. Res., 10, 675688.
  • Koscielny-Bunde, E., J. W. Kantelhardt, P. Braun, A. Bunde, and S. Havlin (2006), Long-term persistence and multifractality of river runoff records: Detrended fluctuations studies, J. Hydrol., 322, 120137.
  • Koutsoyiannis, D. (2002), The Hurst phenomenon and fractional Gaussian noise made easy, Hydrol. Sci. J., 47(4), 573595.
  • Koutsoyiannis, D. (2003), Climate change, the Hurst phenomenon and hydrological statistics, Hydrol. Sci. J., 48(1), 324.
  • Koutsoyiannis, D. (2005), Uncertainty, entropy, scaling and hydrological sthochastics, 2. Time dependence of hydrological processes, Hydrol. Sci. J., 50(43), 405426.
  • Koutsoyiannis, D. (2006), Nonstationarity versus scaling in hydrology, J. Hydrol., 324, 239254, doi:10.1016/j.jhydrol.2005.09.022.
  • Koutsoyiannis, D., and A. Montanari (2007), Statistical analysis of hydroclimatic time series: Uncertainty and insights, Water Resour. Res., 43, W05429, doi:10.1029/2006WR005592.
  • Kwiatkowski, D., P. Phillips, P. Schmidt, and Y. Shin (1992), Testing the null hypothesis of stationarity against the alternative of a unit root, J. Econometrics, 159178.
  • Lettenmaier, D. P., E. F. Wood, and J. R. Wallis (1994), Hydro-climatological trends in the continental United States, 1948–88, J. Clim., 7, 586607.
  • Ljung, L. (1999), System Identification: Theory for the User, Prentice-Hall, Upper Saddle River, N. J.
  • Mandelbrot, B. B., and J. W. V. Ness (1968), Fractional Brownian motions, fractional noises and application, Soc. Ind. Appl. Math. Rev., 10, 422437.
  • Mann, H. B. (1945), Nonparametric tests against trend, Econometrica, 13, 245259.
  • Mann, M. E., R. S. Bradley, and M. K. Hughes (1999), Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties and limitations, Geophys. Res. Lett., 26(6), 759762.
  • Maraun, D., H. Rust, and J. Timmer (2004), Tempting long memory—On the interpretation of DFA results, Nonlinear Process. Geophys., 11, 495503.
  • McIntyre, S., and R. McKitrick (2003), Corrections to the Mann et al. (1998) proxy data base and Northern Hemispheric average temperature series, Energy Environ., 14(6), 751771.
  • Moberg, A., D. M. Sonechkin, K. Holmgren, N. M. Datsenko, and W. Karlen (2005), Highly variable Northern Hemisphere temperatures reconstructed from low and high resolution proxy data, Nature, 433(7026), 613617.
  • Montanari, A., and E. Toth (2007), Calibration of hydrological models in the spectral domain: An opportunity for scarcely gauged basins? Water Resour. Res., 43, W05434, doi:10.1029/2006WR005184.
  • Montanari, A., R. Rosso, and M. S. Taqqu (1997), Fractionally differenced ARIMA models applied to hydrologic time series: Identification, estimation and simulation, Water Resour. Res., 33(5), 10351044.
  • Montanari, A., R. Rosso, and M. S. Taqqu (2000), A seasonal fractional ARIMA model applied to the Nile river monthly flows at Aswan, Water Resour. Res., 36(5), 12491265.
  • Mudelsee, M. (2007), Long memory of rivers from spatial aggragation, Water Resour. Res., 43, W01202, doi:10.1029/2006WR005721.
  • Percival, D., and A. T. Walden (2000), Wavelet Methods for Time Series Analysis, Cambridge Univ. Press, New York.
  • Percival, D. B. (1995), On the estimation of the wavelet variance, Biometrika, 82, 619631.
  • Percival, D. B. (2008), Analysis of geophysical time series using discrete wavelet transforms: An overview, in Nonlinear Time Series Analysis in the Geosciences—Applications in Climatology, Geodynamics, and Solar-Terrestrial Physics, edited by R. V. Donner, and S. M. Barbosa, pp. 6179, Berlin, Springer.
  • Phillips, P. C. B., and P. Perron (1988), Testing for a unit root in time series regression, Biometrika, 75, 335346.
  • Reisen, V. A. (1994), Estimation of the fractional differential parameter in the ARIMA (p, d, q) model using the smoothed periodogram, J. Time Ser. Anal., 15(3), 335350.
  • Robinson, P. M. (2003), Time Series With Long Memory, Advanced Texts in Econometrics, Oxford Univ. Press, New York.
  • Rust, H. W., O. Mestre, and V. K. C. Venema (2008), Fewer jumps, less memory: Homogenized temperature records and long memory, J. Geophys. Res., 113, D19110, doi:10.1029/2008JD009919.
  • Rybski, D., A. Bunde, S. Havlin, and H. von Storch (2006), Long-term persistence in climate and the detection problem, Geophys. Res. Lett., 33, L06718, doi:10.1029/2005GL025591.
  • Sibbertsen, P. (2003), Log-periodogram estimation of the memory parameter of a long-memory process under trend, Stat. Prob. Lett., 61(3), 261268.
  • Silva, E. M., G. C. Franco, V. A. Reisen, and F. R. B. Cruz (2006), Local bootstrap approaches for fractional differential parameter estimation in ARFIMA models, Computat. Stat. Data Anal., 51, 10021011, doi:10.1016/j.csda.2005.10.007.
  • Stephenson, D. B., V. Pavan, and R. Bojariu (2000), Is the North Atlantic Oscillation a random walk? Int. J. Climatol., 20, 118.
  • Syroka, J., and R. Toumi (2001), Scaling and persistence in observed and modeled surface temperature, Geophys. Res. Lett., 28, 32553258.
  • Taqqu, M. S., and V. Teverovsky (1997), Estimating long-range dependence in finite and infinite variance series, in A Practical Guide to Heavy Tails: Statistical Techniques for Analyzing Heavy Tailed Distributions, edited by R. F. R. Adler, and M. S. Taqqu, Birkhuser, Boston, Mass.
  • Taqqu, M. S., V. Teverovsky, and W. Willinger (1995), Estimators for long-range dependence: An empirical study, Fractals, 3(4), 785798.
  • Trenberth, K. E., et al. (2007), Observations: Surface and atmospheric climate change, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, chap. 3, Cambridge Univ. Press, New York.
  • Ventura, V., C. J. Paciorek, and J. S. Risbey (2004), Controlling the proportion of falsely rejected hypothesis when conducting multiple tests with climatological data, J. Clim., 17, 43434356.
  • Vyushin, D. I., and P. J. Kushner (2009), Power-law and long-memory characteristics of the atmospheric general circulation, J. Clim., doi:10.1175/2008JCLI2528.1, in press.
  • Wang, W., P. H. A. J. M. V. Gelder, J. K. Vrijling, and X. Chen (2007), Detecting long-memory: Monte Carlo simulations and application to daily streamflow processes, Hydrol. Earth Syst. Sci., 11, 851862.
  • Whittle, P. (1953), Estimation and information in stationarity time series, Ark. Mat., 2, 423434.
  • Yue, S., and C. Y. Wang (2002), The applicability of pre-whitening to eliminate the influence of serial correlation on the Mann-Kendall test, Water Resour. Res., 38(6), 1068, doi:10.1029/2001WR000861.
  • Yue, S., and C. Y. Wang (2004), The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series, Water Resour. Manage., 18, 201218.
  • Yue, S., P. Pilon, and G. Cavadias (2002a), Power of the Mann-Kendall and Spearman's rho tests for detecting monotonic trends in hydrological series, J. Hydrol., 259, 254271.
  • Yue, S., P. Pilon, B. Phinney, and G. Cavadias (2002b), The influence of autocorrelation on the ability to detect trend in hydrological series, Hydrol. Processes, 16, 18071829.