Daily estimates of aerosol optical thickness over land surface based on a directional and temporal analysis of SEVIRI MSG visible observations



[1] This paper presents an innovative method for obtaining a daily estimate of a quality-controlled aerosol optical thickness (AOT) of a vertical column of the atmosphere over the continents. Because properties of land surface are more stationary than the atmosphere, the temporal dimension is exploited for simultaneous retrieval of the surface and aerosol bidirectional reflectance distribution function (BRDF) coming from a kernel-driven reflectance model. Off-zenith geometry of illumination enhances the forward scattering peak of the aerosol, which improves the retrieval of AOT from the aerosol BRDF. The solution is obtained through an unconstrained linear inversion procedure and perpetuated in time using a Kalman filter. On the basis of numerical experiments using the 6S atmospheric code, the validity of the BRDF model is demonstrated. The application is carried out with data from the Spinning Enhanced Visible and Infra Red Imager (SEVIRI) instrument on board the geostationary Meteosat Second Generation (MSG) satellite from June 2005 to August 2007 for midlatitude regions and from March 2006 to June 2006 over desert sites. The satellite-derived SEVIRI AOT compares favorably with Aerosol Robotic Network (AERONET) measurements for a number of contrasted stations and also similar Moderate Resolution Imaging Spectroradiometer (MODIS) products, within 20% of relative accuracy. The method appears competitive for tracking anthropogenic aerosol emissions in the troposphere and shows a potential for the challenging estimate of dust events over bright targets. Moreover, a high-frequency distribution of AOT provides hints as to the variability of pollutants according to town density and, potentially, motor vehicle traffic. The outcomes of the present study are expected to promote a monitoring of the global distributions of natural and anthropogenic sources and sinks of aerosol, which are receiving increased attention because of their climatic implications.