SEARCH

SEARCH BY CITATION

References

  • Abril, G., F. Guérin, S. Richard, R. Delmas, C. Galy-Lacaux, P. Gosse, A. Tremblay, L. Varfalvy, M. A. D. Santos, and B. Matvienko (2005), Carbon dioxide and methane emissions and the carbon budget of a 10-year old tropical reservoir (Petit Saut, French Guiana), Global Biogeochem. Cycles, 19, GB4007, doi:10.1029/2005GB002457.
  • Alm, J., S. Saarnio, H. Nykänen, J. Silvola, and P. J. Martikainen (1999), Winter CO2, CH4 and N2O fluxes on some natural and drained boreal peatlands, Biogeochemistry, 44, 163196.
  • Bambace, L. A. W., F. M. Ramos, I. B. T. Lima, and R. R. Rosa (2007), Mitigation and recovery of methane emissions from tropical hydroelectric dams, Energy, 32, 10381046.
  • Bergman, I., M. Klarqvist, and M. Nilsson (2000), Seasonal variation in rates of methane production from peat of various botanical origins: Effects of temperature and substrate quality, FEMS Microbiol. Ecol., 33, 181189.
  • Bergstrom, I., S. Makela, P. Kankaala, and P. Kortelainen (2007), Methane efflux from littoral vegetation stands of southern boreal lakes: An upscaled regional estimate, Atmos. Environ., 41(2), 339351.
  • Bubier, J., A. Costello, T. R. Moore, N. T. Roulet, and K. Savage (1993), Microtopography and methane flux in boreal peatlands, Northern Ontario, Canada, Can. J. Bot., 71(8), 10561063.
  • Chen, H., S. P. Yao, N. Wu, Y. F. Wang, P. Luo, J. P. Tian, and Y. H. Gao (2008), Determinants influencing seasonal variations of methane emissions from alpine wetlands in Zoige Plateau and their implications, J. Geophys. Res., 113, D12303, doi:10.1029/2006JD008072.
  • Chen, H., N. Wu, S. P. Yao, Y. H. Gao, D. Zhu, Y. F. Wang, W. Xiong, and X. Yuan (2009), High methane emissions from a littoral zone on the Qinghai-Tibetan Plateau, Atmos. Environ., doi:10.1016/j.atmosenv.2009.07.001, in press.
  • Cicerone, R. J., and R. S. Oremland (1988), Biogeochemical aspects of atmospheric methane, Global Biogeochem. Cycles, 2(4), 299327.
  • Cullenward, D., and D. G. Victor (2006), The dam debate and its discontents, Clim. Change, 75, 8186.
  • Dan, J., T. Kumai, A. Sugimoto, and J. Murase (2004), Biotic and abiotic methane releases from Lake Biwa sediment slurry, Limnology, 5(3), 149154.
  • Denman, K. L., et al. (2007), Couplings between changes in the climate system and biogeochemistry, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., Cambridge Univ. Press, Cambridge, U. K.
  • Ding, W. X., Z. C. Cai, H. Tsuruta, and X. P. Li (2002), Effect of standing water depth on methane emissions from freshwater marshes in northeast China, Atmos. Environ., 36(33), 51495157.
  • Downing, J. A., et al. (2006), The global abundance and size distribution of lakes, ponds, and impoundments, Limnol. Oceanogr., 51, 23882397.
  • Duchemin, E., M. Lucotte, R. Canuel, and N. Soumis (2006), First assessment of CH4 and CO2 emissions from shallow and deep zones of boreal reservoirs upon ice break-up, Lakes Reserv. Res. Manag., 11, 1019.
  • Fearnside, P. M. (2002), Greenhouse gas emissions from a hydroelectric reservoir (Brazil's Tucuruí Dam) and the energy policy implications, Water Air Soil Pollut., 133, 6996.
  • Fearnside, P. M. (2004), Greenhouse gas emissions from hydroelectric dams: Controversies provide a springboard for rethinking a supposedly “clean” energy source, Clim. Change, 66, 18.
  • Fearnside, P. M. (2005), Do hydroelectric dams mitigate global warming? The case of Brazil's Curuá-Una Dam, Mitig. Adapt. Strategies Glob. Chang., 10(4), 675691.
  • Galy-Lacaux, C., R. Delmas, C. Jambert, J.-F. Dumestre, L. Labroue, S. Richard, and P. Gosse (1997), Gaseous emissions and oxygen consumption in hydroelectric dams: A case study in French Guyana, Global Biogeochem. Cycles, 11(4), 471483.
  • Giles, J. (2006), Methane quashes green credentials of hydropower, Nature, 444, 254255.
  • Greenup, A. L., M. A. Bradford, and N. P. McNnmara (2000), The role of Eriophorum vagiratun in CH4 flux fiom an ombrotrophic peatland, Plant Soil, 227, 265272.
  • Guérin, F., G. Abril, S. Richard, B. Burban, C. Reynouard, P. Seyler, and R. Delmas (2006), Methane and carbon dioxide emissions from tropical reservoirs: Significance of downstream rivers, Geophys. Res. Lett., 33, L21407, doi:10.1029/2006GL027929.
  • Han, G. X., B. Zhu, C. S. JIiang, M. R. Gao, Z. J. Zhong, and X. M. Ma (2005), Methane emission from paddy fields and its affecting factors in hills of the central Sichuan Basin (in Chinese with English abstract), Rural Eco-Environ., 21, 16.
  • Hutchinson, G. L., and A. R. Mosier (1981), Improved soil cover method for field measurement of nitrous oxide fluxes, Soil Sci. Soc. Am. J., 45, 311316.
  • Juutinen, S., J. Alm, P. Martikainen, and J. Silvola (2001), Effects of spring flood and water level draw-down on methane dynamics in the littoral zone of boreal lakes, Freshw. Biol., 46, 855869.
  • Juutinen, S., J. Alm, T. Larmola, J. T. Huttunen, M. Morero, P. J. Martikainen, and J. Silvola (2003), Major implication of the littoral zone for methane release from boreal lakes, Global Biogeochem. Cycles, 17(4), 1117, doi:10.1029/2003GB002105.
  • Kaki, T., A. Ojala, and P. Kankaala (2001), Diel variation in methane emissions from stands of Phragmites australis (Cav.) Trin. ex Steud. and Typha latifolia L. in a boreal lake, Aquat. Bot., 71(4), 259271.
  • Kankaala, P., S. Makela, I. Bergstrom, E. Huitu, T. Kaki, A. Ojala, M. Rantakari, P. Kortelainen, and L. Arvola (2003), Midsummer spatial variation in methane efflux from stands of littoral vegetation in a boreal meso-eutrophic lake, Freshwater Biol., 48(9), 16171629.
  • Kankaala, P., A. Ojala, and T. Käki (2004), Temporal and spatial variation in methane emissions from a flooded transgression shore of a boreal lake, Biogeochemistry, 68, 297311.
  • Kankaala, P., T. Käki, S. Mäkelä, A. Ojala, H. Pajunen, and L. Arvola (2005), Methane efflux in relation to plant biomass and sediment characteristics in stands of three common emergent macrophytes in boreal mesoeutrophic lakes, Global Change Biol., 11, 145153.
  • Keppler, F., J. Hamilton, M. Brass, and T. Rockmann (2006), Methane emissions from terrestrial plants under aerobic conditions, Nature, 439, 187191.
  • King, J. Y., and W. S. Reeburgh (2002), A pulse-labeling experiment to determine the contribution of recent plant photosynthates to net methane emission in arctic wet sedge tundra, Soil Biol. Biochem., 34, 173180.
  • King, J. Y., W. S. Reeburgh, K. K. Thieler, G. W. Kling, W. M. Loya, L. C. Johnson, and K. J. Nadelhoffer (2002), Pulse-labeling studies of carbon cycling in Arctic tundra ecosystems: The contribution of photosynthates to methane emission, Global Biogeochem. Cycles, 16(4), 1062, doi:10.1029/2001GB001456.
  • Lima, I. B. T., F. M. Ramos, L. A. W. Bambace, and R. R. Rosa (2008), Methane emissions from large dams as renewable energy resources: A developing nation perspective, Mitig. Adapt. Strategies Glob. Chang., 13, 193206.
  • Marani, L., and P. C. Alvala (2007), Alvala Methane emissions from lakes and floodplains in Pantanal, Brazil, Atmos. Environ., 41, 16271633.
  • Milliman, J. (1997), Blessed dams or damned dams? Nature, 386, 325327.
  • Mitsch, W. J., J. J. Lu, X. Z. Yuan, W. S. He, and L. Zhang (2008), Optimizing ecosystem services in China, Science, 322, 528.
  • Ramos, M., L. A. W. Bambace, B. T. Lima, R. R. Rosa, E. A. Mazzi, and P. M. Fearnside (2009), Methane stocks in tropical hydropower reservoirs as a potential energy source, Clim. Change, 93, 113.
  • Rudd, J. W. M., R. Harris, C. A. Kelly, and R. E. Hecky (1993), Are hydroelectric reservoirs significant sources of greenhouse gases? Ambio, 22, 246248.
  • Ruddiman, W. (2003), The anthropogenic era began thousands of years ago, Clim. Change, 61, 261293.
  • Saarnio, S., and J. Silvola (1999), Effect of increased CO2 and N on CH4 efflux from a boreal mire: A growth chamber experiment, Oecologia, 119, 349356.
  • Saarnio, S., J. Alm, J. Silvola, A. Lohila, H. Nykanen, and P. J. Martikainen (1997), Seasonal variation in CH4 emissions and production and oxidation potentials at microsites on an oligotrophic pine fen, Oecologica, 110, 414422.
  • Saint Louis, V. L., C. A. Kelly, E. Duchemin, J. W. M. Rudd, and D. M. Rosenberg (2000), Reservoir surface as sources of greenhouse gases to the atmosphere: A global estimate, Bioscience, 55, 766775.
  • Stone, R. (2008), Three Gorges Dam: Into the unknown, Science, 321, 628632.
  • Van den Pol-Van Dasselaar, A., M. L. Van Beusichem, and O. Oenema (1999), Determinants of spatial variability of methane emissions from wet grasslands on peat soil, Biogeochemistry, 44(2), 221237.
  • van der Nat, F.-J. W. A., and J. J. Middelburg (1998), Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris, Aquat. Bot., 61, 95110.
  • Van Ham, J., A. P. M. Baede, L. A. Meyer, and R. Ybema (Eds.) (2000), Non-CO2 Greenhouse Gases: Scientific Understanding, Control and Implementation, Kluwer Acad., Netherlands.
  • Wand, U., V. A. Samarkin, H. M. Nitzsche, and H. W. Hubberten (2006), Biogeochemistry of methane in the permanently ice-covered Lake Untersee, central Dronning Maud Land, East Antarctica, Limnol. Oceanogr., 51(2), 11801194.
  • Wang, H. J., J. W. Lu, W. D. Wang, L. Y. Yang, and C. Q. Yin (2006), Methane fluxes from the littoral zone of hypereutrophic Taihu Lake, China, J. Geophys. Res., 111, D17109, doi:10.1029/2005JD006864.
  • Whiting, G. J., and J. P. Chanton (1993), Primary production control of methane emissions from wetlands, Nature, 364, 794795.
  • Wu, J. G., J. H. Huang, X. G. Han, Z. Q. Xie, and X. M. Gao (2003), Three-Gorges Dam—Experiment in habitat fragmentation? Science, 300(5623), 12391240.
  • Wu, J. G., J. H. Huang, X. G. Han, X. M. Gao, F. L. He, M. X. Jiang, Z. G. Jiang, R. B. Primack, and Z. H. Shen (2004), The Three Gorges Dam: An ecological perspective, Front. Ecol. Environ., 2(5), 241248.
  • Yavitt, J. B., G. E. Lang, and R. K. Wieder (1987), Control of carbon mineralisation to CH4 and CO2 in anaerobic, sphagnum-derived peat from Big Run Bog, West Virginia, Biogeochemistry, 4, 141157.