SEARCH

SEARCH BY CITATION

References

  • Austin, R. T., A. J. Heymsfield, and G. L. Stephens (2009), Retrieval of ice cloud microphysical parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 114, D00A23, doi:10.1029/2008JD010049.
  • Baker, D. F., H. Bösch, S. C. Doney, and D. S. Schimel (2008), Carbon source/sink information provided by column CO2 measurements from the Orbiting Carbon Observatory, Atmos. Chem. Phys. Discuss., 8, 20,05120,112.
  • Baum, B. A., A. J. Heymsfield, P. Yang, and S. T. Bedka (2005a), Bulk scattering properties for the remote sensing of ice clouds. Part I: Microphysical data and models, J. Appl. Meteorol., 44, 18851895.
  • Baum, B. A., P. Yang, A. J. Heymsfield, S. Platnick, M. D. King, Y.-X. Hu, and S. T. Bedka (2005b), Bulk scattering properties for the remote sensing of ice clouds. Part II: Narrowband models, J. Appl. Meteorol., 44, 18961911.
  • Bodhaine, B. A., N. B. Wood, E. G. Dutton, and J. R. Slusser (1999), On Rayleigh optical depth calculations, J. Atmos. Oceanic Technol., 16, 18541861.
  • Boesche, E., P. Stammes, and R. Bennartz (2009), Aerosol influence on polarization and intensity in near-infrared O2 and CO2 absorption bands observed from space, J. Quant. Spectrosc. Radiat. Transfer, 110, 223239.
  • Bösch, H., et al. (2006), Space-based near-infrared CO2 measurements: Testing the Orbiting Carbon Observatory retrieval algorithm and validation concept using SCIAMACHY observations over Park Falls, Wisconsin, J. Geophys. Res., 111, D23302, doi:10.1029/2006JD007080.
  • Bovensmann, H., J. P. Burrows, M. Buchwitz, J. Frerick, S. Noël, V. V. Rozanov, K. V. Chance, and A. P. H. Goede (1999), SCIAMACHY: Mission objectives and measurement modes, J. Atmos. Sci., 56, 127150.
  • Butz, A., O. P. Hasekamp, C. Frankenburg, and I. Aben (2009), Retrievals of Atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects, Appl. Opt., 48, 33223336.
  • Chandrasekhar, S. (1960), Radiative Transfer, Dover, Mineola, N. Y.
  • Chevallier, F. (2001), Sampled databases of 60-level atmospheric profiles from the ECMWF analyses, SAF Programme Res. Rep. 4, EUMETSAT, Darmstadt, Germany.
  • Chevallier, F., F.-M. Bréon, and P. J. Rayner (2007), Contribution of the Orbiting Carbon Observatory to the estimation of CO2 sources and sinks: Theoretical study in a variational data assimilation framework, J. Geophys. Res., 112, D09307, doi:10.1029/2006JD007375.
  • Cox, C., and W. H. Munk (1954), Statistics of the sea surface derived from Sun glitter, J. Mar. Res., 13, 198227.
  • Crisp, D., et al. (2004), The Orbiting Carbon Observatory (OCO) mission, Adv. Space Res., 34, 700709.
  • de Rooij, W. A., and C. C. A. H. van der Stap (1984), Expansion of Mie scattering matrices in generalized spherical functions, Astron. Astrophys., 131, 237248.
  • Duan, M., Q. Min, and J. Li (2005), A fast radiative transfer model for simulating high-resolution absorption bands, J. Geophys. Res., 110, D15201, doi:10.1029/2004JD005590.
  • Fu, Q., and K. N. Liou (1992), On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres, J. Atmos. Sci., 49, 21392156.
  • Goody, R., R. West, L. Chen, and D. Crisp (1989), The correlated-k method for radiation calculations in nonhomogeneous atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 43, 191199.
  • Hamazaki, T., Y. Kaneko, A. Kuze, and K. Kondo (2005), Fourier transform spectrometer for Greenhouse Gases Observing Satellite (GOSAT), Proc. SPIE Int. Soc. Opt. Eng., 5659, 7380.
  • Hansen, J. E. (1971), Multiple scattering of polarized light in planetary atmospheres. Part I. The doubling method, J. Atmos. Sci., 28, 120125.
  • Hasekamp, O. P., and A. Butz (2008), Efficient calculation of intensity and polarization spectra in vertically inhomogeneous scattering and absorbing atmospheres, J. Geophys. Res., 113, D20309, doi:10.1029/2008JD010379.
  • Heidinger, A. K., C. O'Dell, R. Bennartz, and T. Greenwald (2006), The successive-order-of-interaction radiative transfer model. Part I: Model development, J. Appl. Meteorol. Climatol., 45, 13881402.
  • Kawa, S. R., D. J. Erickson, S. Pawson, and Z. Zhu (2004), Global CO2 transport simulations using meteorological data from the NASA data assimilation system, J. Geophys. Res., 109, D18312, doi:10.1029/2004JD004554.
  • Lacis, A. A., and V. Oinas (1991), A description of the correlated-k distribution method for modelling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres, J. Geophys. Res., 96, 90279064.
  • Liou, K. N. (2002), An Introduction to Atmospheric Radiation, Academic, San Diego, Calif.
  • Miller, C. E., et al. (2007), Precision requirements for space-based image data, J. Geophys. Res., 112, D10314, doi:10.1029/2006JD007659.
  • Min, Q., and L. C. Harrison (2004), Retrieval of atmospheric optical depth profiles from downward-looking high-resolution O2 A-band measurements: Optically thin conditions, J. Atmos. Sci., 61, 24692477.
  • Nakajima, T., and M. Tanaka (1988), Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation, J. Quant. Spectrosc. Radiat. Transfer, 40, 5169.
  • Natraj, V., and R. J. D. Spurr (2007), A fast linearized pseudo-spherical two orders of scattering model to account for polarization in vertically inhomogeneous scattering absorbing media, J. Quant. Spectrosc. Radiat. Transfer, 107, 263293.
  • Natraj, V., X. Jiang, R.-L. Shia, X. Huang, J. S. Margolis, and Y. L. Yung (2005), Application of principal component analysis to high spectral resolution radiative transfer: A case study of the O2 A band, J. Quant. Spectrosc. Radiat. Transfer, 95, 539556.
  • O'Brien, D., I. Polonsky, C. W. O'Dell and A. Carheden (2009), Orbiting Carbon Observatory (OCO) algorithm theoretical basis document: The OCO simulator, technical report, 48 pp., Coop. Inst. for Res. in the Atmos., Colo. State Univ., Fort Collins.
  • Oshchepkov, S., A. Bril, and T. Yokota (2008), PPDF-based method to account for atmospheric light scattering in observations of carbon dioxide from space, J. Geophys. Res., 113, D23210, doi:10.1029/2008JD010061.
  • Rodgers, C. D. (2000), Inverse Methods for Atmospheric Sounding: Theory and Practice, World Sci., Hackensack, N. J.
  • Rothman, L. S., et al. (2009), The HITRAN 2008 molecular spectroscopic database, J. Quant. Spectrosc. Radiat. Transfer, 110, 533572.
  • Shettle, E. P., and R. W. Fenn (1979), Models for the aerosols of the lower atmosphere and the effects of humidity variations on their optical properties, AFGL-TR-79-0214, Air Force Geophys. Lab., Hanscom Air Force Base, Mass.
  • Siewert, C. E. (1982), On the phase matrix basic to the scattering of polarized light, Astron. Astrophys., 109, 195200.
  • Spurr, R. (2002), Simultaneous derivation of intensities and weighting functions in a general pseudo-spherical discrete ordinate radiative transfer treatment, J. Quant. Spectrosc. Radiat. Transfer, 75, 129175.
  • Stamnes, K., S.-C. Tsay, K. Jayaweera, and W. Wiscombe (1988), Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media, Appl. Opt., 27, 25022509.
  • Suto, H., K. Takahiro, J. Yoshida, J. Ishida, A. Kuze, M. Nakajima, and T. Hamazaki (2008), The pre-launch performance test and calibration results of Thermal And Near-infrared Sensor for carbon Observation (TANSO) on GOSAT, Proc. SPIE Int. Soc. Opt. Eng., 6297, doi:10.1117/12.677113.
  • van de Hulst, H. C. (1980), Multiple Light Scattering. Tables, Formulas, and Applications, vol. 1, Academic, San Diego, Calif.
  • West, R., D. Crisp, and L. Chen (1990), Mapping transformations for broadband atmospheric radiation calculations, J. Quant. Spectrosc. Radiat. Transfer, 43, 191199.
  • Wiscombe, W. (1977), The delta-M method: Rapid yet accurate radiative flux calculations for strongly asymmetric phase functions, J. Atmos. Sci., 36, 14081422.