• Aucott, M. L., A. McCulloch, T. E. Graedel, G. Kleiman, P. Midgley, and Y.-F. Li (1999), Anthropogenic emissions of trichloromethane (chloroform, CHCl3) and chlorodifluoromethane (HCFC-22): Reactive Chlorine Emissions Inventory, J. Geophys. Res., 104(D7), 84058415, doi:10.1029/1999JD900053.
  • Chen, C., and W. R. Cotton (1983), A one-dimensional simulation of the stratocumulus-capped mixed layer, Boundary Layer Meteorol., 25(3), 289321.
  • Enomoto, T., Y. Yokouchi, K. Izumi, and T. Inagaki (2005), Development of an analytical method for atmospheric halocarbons and its application to airborne observation, J. Jpn. Soc. Atmos. Environ., 40, 18.
  • Enting, I. G. (Ed.) (2002), Inverse Problems in Atmospheric Constituent Transport, Cambridge University Press, Cambridge, U. K.
  • Enting, I. G., and J. V. Mansbridge (1989), Seasonal sources and sinks of atmospheric CO2: Direct inversion of filtered data, Tellus, 41B, 111126.
  • Forster, P., V. Ramaswamy, P. Artaxo, and T. Berntsen (2007), Changes in atmospheric constituents and in radiative forcing, in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., pp. 137153, Cambridge Univ. Press, Cambridge, U. K.
  • Gurney, K. R., et al. (2003), TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information, Tellus Series B-Chem. Phys. Meteorol., 55(2), 555579.
  • Kuo, H. L. (1974), Further studies of the parameterization of the influence of cumulus convection on large-scale flow, J. Atmos. Sci., 31, 12321240.
  • Maksyutov, S., P. K. Patra, R. Onishi, T. Saeki, and T. Nakazawa (2008), NIES/FRCGC global atmospheric tracer transport model: Description, validation, and surface sources and sinks inversion, J. Earth Simulator, 9, 318.
  • McCulloch, A., P. M. Midgley, and P. Ashford (2003), Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere, Atmos. Environ., 37(7), 889902.
  • McCulloch, A., P. M. Midgley, and A. A. Lindley (2006), Recent changes in the production and global atmospheric emissions of chlorodifluoromethane (HCFC-22), Atmos. Environ., 40(5), 936942.
  • Mellor, G. L., and T. Yamada (1974), A hierarchy of turbulence closure models for planetary boundary layers, J. Atmos. Sci., 30, 10611069.
  • Montzka, S. A., B. D. Hall, and J. W. Elkins (2009), Accelerated increases observed for hydrochlorofluorocarbons since 2004 in the global atmosphere, Geophys. Res. Lett., 36, L03804, doi:10.1029/2008GL036475.
  • Nakicenovic, N., et al. (2000), Special report on emissions scenarios: A special report of working group III of the intergovernmental panel on climate change, 599 pp., Cambridge University Press, Cambridge, U. K.
  • Pielke, R. A., et al. (1992), A comprehensive meteorological modeling system: RAMS, Meteorol. Atmos. Phys., 49(1–4), 6991.
  • Press, W. H., S. A. Teukolsky, W. T. Vetterling, B. P. Glannery, and M. Metcalf (Eds.) (1999), Numerical Recipes in Fortran 90, 2nd ed., 500 pp., Cambridge University Press, Cambridge, U. K.
  • Ryall, D. B., R. G. Derwent, A. J. Manning, P. G. Simmonds, and S. O'Doherty (2001), Estimating source regions of European emissions of trace gases from observations at Mace Head, Atmos. Environ., 35(14), 25072523.
  • Stohl, A., et al. (2009), A new analytical inversion method for determining regional and global emissions of greenhouse gases: Sensitivity studies and application to halocarbons, Atmos. Chem. Phys., 9, 15971620.
  • Tanimoto, H., et al. (2008), Diagnosing recent CO emissions and ozone evolution in East Asia using coordinated surface observations, adjoint inverse modeling, and MOPITT satellite data, Atmos. Chem. Phys., 8(14), 38673880.
  • Tarantola, A. (2005), Inverse Problem Theory and Methods for Model Parameter Estimation, 352 pp., Society for Industrial and Applied Mathematics, Philadelphia.
  • Uno, I., K. Harada, S. Satake, Y. Hara, and Z. F. Wang (2005), Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model, J. Meteorol. Soc. Jpn., 83A, 219239.
  • Uno, I., K. Yumimoto, A. Shimizu, Y. Hara, N. Sugimoto, Z. Wang, Z. Liu, and D. M. Winker (2008), 3D structure of Asian dust transport revealed by CALIPSO lidar and a 4DVAR dust model, Geophys. Res. Lett., 35, L06803, doi:10.1029/2007GL032329.
  • Yokouchi, Y., T. Inagaki, K. Yazawa, T. Tamaru, T. Enomoto, and K. Izumi (2005), Estimates of ratios of anthropogenic halocarbon emissions from Japan based on aircraft monitoring over Sagami Bay, Japan, J. Geophys. Res., 110, D06301, doi:10.1029/2004JD005320.
  • Yokouchi, Y., S. Taguchi, T. Saito, Y. Tohjima, H. Tanimoto, and H. Mukai (2006), High frequency measurements of HFCs at a remote site in east Asia and their implications for Chinese emissions, Geophys. Res. Lett., 33, L21814, doi:10.1029/2006GL026403.
  • Yumimoto, K., I. Uno, N. Sugimoto, A. Shimizu, Z. Liu, and D. M. Winker (2008), Adjoint inversion modeling of Asian dust emission using lidar observations, Atmos. Chem. Phys., 8(11), 28692884.